MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Unicode version

Theorem acndom2 7940
Description: A set smaller than one with choice sequences of length  A also has choice sequences of length 
A. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2  |-  ( X  ~<_  Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )

Proof of Theorem acndom2
Dummy variables  f 
g  h  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7122 . 2  |-  ( X  ~<_  Y  ->  E. f 
f : X -1-1-> Y
)
2 simplr 733 . . . . . . . 8  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  Y  e. AC  A )
3 imassrn 5219 . . . . . . . . . . 11  |-  ( f
" ( g `  x ) )  C_  ran  f
4 simplll 736 . . . . . . . . . . . 12  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  f : X -1-1-> Y
)
5 f1f 5642 . . . . . . . . . . . 12  |-  ( f : X -1-1-> Y  -> 
f : X --> Y )
6 frn 5600 . . . . . . . . . . . 12  |-  ( f : X --> Y  ->  ran  f  C_  Y )
74, 5, 63syl 19 . . . . . . . . . . 11  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ran  f  C_  Y
)
83, 7syl5ss 3361 . . . . . . . . . 10  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( f " (
g `  x )
)  C_  Y )
9 elmapi 7041 . . . . . . . . . . . . . . . . . 18  |-  ( g  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  g : A --> ( ~P X  \  { (/)
} ) )
109adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
g : A --> ( ~P X  \  { (/) } ) )
1110ffvelrnda 5873 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  e.  ( ~P X  \  { (/) } ) )
1211eldifad 3334 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  e.  ~P X
)
1312elpwid 3810 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  C_  X )
14 f1dm 5646 . . . . . . . . . . . . . . 15  |-  ( f : X -1-1-> Y  ->  dom  f  =  X
)
154, 14syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  dom  f  =  X )
1613, 15sseqtr4d 3387 . . . . . . . . . . . . 13  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  C_  dom  f )
17 dfss1 3547 . . . . . . . . . . . . 13  |-  ( ( g `  x ) 
C_  dom  f  <->  ( dom  f  i^i  ( g `  x ) )  =  ( g `  x
) )
1816, 17sylib 190 . . . . . . . . . . . 12  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( dom  f  i^i  ( g `  x
) )  =  ( g `  x ) )
19 eldifsni 3930 . . . . . . . . . . . . 13  |-  ( ( g `  x )  e.  ( ~P X  \  { (/) } )  -> 
( g `  x
)  =/=  (/) )
2011, 19syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  =/=  (/) )
2118, 20eqnetrd 2621 . . . . . . . . . . 11  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( dom  f  i^i  ( g `  x
) )  =/=  (/) )
22 imadisj 5226 . . . . . . . . . . . 12  |-  ( ( f " ( g `
 x ) )  =  (/)  <->  ( dom  f  i^i  ( g `  x
) )  =  (/) )
2322necon3bii 2635 . . . . . . . . . . 11  |-  ( ( f " ( g `
 x ) )  =/=  (/)  <->  ( dom  f  i^i  ( g `  x
) )  =/=  (/) )
2421, 23sylibr 205 . . . . . . . . . 10  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( f " (
g `  x )
)  =/=  (/) )
258, 24jca 520 . . . . . . . . 9  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( ( f "
( g `  x
) )  C_  Y  /\  ( f " (
g `  x )
)  =/=  (/) ) )
2625ralrimiva 2791 . . . . . . . 8  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  A. x  e.  A  ( ( f "
( g `  x
) )  C_  Y  /\  ( f " (
g `  x )
)  =/=  (/) ) )
27 acni2 7932 . . . . . . . 8  |-  ( ( Y  e. AC  A  /\  A. x  e.  A  ( ( f " (
g `  x )
)  C_  Y  /\  ( f " (
g `  x )
)  =/=  (/) ) )  ->  E. k ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f "
( g `  x
) ) ) )
282, 26, 27syl2anc 644 . . . . . . 7  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. k ( k : A --> Y  /\  A. x  e.  A  (
k `  x )  e.  ( f " (
g `  x )
) ) )
29 acnrcl 7928 . . . . . . . . 9  |-  ( Y  e. AC  A  ->  A  e. 
_V )
3029ad3antlr 713 . . . . . . . 8  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) ) ) )  ->  A  e.  _V )
31 simp-4l 744 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  f : X -1-1-> Y )
32 f1f1orn 5688 . . . . . . . . . . . . . . 15  |-  ( f : X -1-1-> Y  -> 
f : X -1-1-onto-> ran  f
)
3331, 32syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  f : X
-1-1-onto-> ran  f )
34 simprr 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( k `  x )  e.  ( f " ( g `
 x ) ) )
353, 34sseldi 3348 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( k `  x )  e.  ran  f )
36 f1ocnvfv2 6018 . . . . . . . . . . . . . 14  |-  ( ( f : X -1-1-onto-> ran  f  /\  ( k `  x
)  e.  ran  f
)  ->  ( f `  ( `' f `  ( k `  x
) ) )  =  ( k `  x
) )
3733, 35, 36syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( f `  ( `' f `  ( k `  x
) ) )  =  ( k `  x
) )
3837, 34eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( f `  ( `' f `  ( k `  x
) ) )  e.  ( f " (
g `  x )
) )
39 f1ocnv 5690 . . . . . . . . . . . . . . 15  |-  ( f : X -1-1-onto-> ran  f  ->  `' f : ran  f -1-1-onto-> X )
40 f1of 5677 . . . . . . . . . . . . . . 15  |-  ( `' f : ran  f -1-1-onto-> X  ->  `' f : ran  f
--> X )
4133, 39, 403syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  `' f : ran  f --> X )
4241, 35ffvelrnd 5874 . . . . . . . . . . . . 13  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( `' f `  ( k `  x ) )  e.  X )
4313ad2ant2r 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( g `  x )  C_  X
)
44 f1elima 6012 . . . . . . . . . . . . 13  |-  ( ( f : X -1-1-> Y  /\  ( `' f `  ( k `  x
) )  e.  X  /\  ( g `  x
)  C_  X )  ->  ( ( f `  ( `' f `  (
k `  x )
) )  e.  ( f " ( g `
 x ) )  <-> 
( `' f `  ( k `  x
) )  e.  ( g `  x ) ) )
4531, 42, 43, 44syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( (
f `  ( `' f `  ( k `  x ) ) )  e.  ( f "
( g `  x
) )  <->  ( `' f `  ( k `  x ) )  e.  ( g `  x
) ) )
4638, 45mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( `' f `  ( k `  x ) )  e.  ( g `  x
) )
4746expr 600 . . . . . . . . . 10  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  x  e.  A )  ->  ( ( k `  x )  e.  ( f " ( g `
 x ) )  ->  ( `' f `
 ( k `  x ) )  e.  ( g `  x
) ) )
4847ralimdva 2786 . . . . . . . . 9  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  ->  ( A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) )  ->  A. x  e.  A  ( `' f `  (
k `  x )
)  e.  ( g `
 x ) ) )
4948impr 604 . . . . . . . 8  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) ) ) )  ->  A. x  e.  A  ( `' f `  ( k `  x ) )  e.  ( g `  x
) )
50 acnlem 7934 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( `' f `  (
k `  x )
)  e.  ( g `
 x ) )  ->  E. h A. x  e.  A  ( h `  x )  e.  ( g `  x ) )
5130, 49, 50syl2anc 644 . . . . . . 7  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) ) ) )  ->  E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) )
5228, 51exlimddv 1649 . . . . . 6  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h A. x  e.  A  ( h `  x )  e.  ( g `  x ) )
5352ralrimiva 2791 . . . . 5  |-  ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  ->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) )
54 vex 2961 . . . . . . . 8  |-  f  e. 
_V
5554dmex 5135 . . . . . . 7  |-  dom  f  e.  _V
5614, 55syl6eqelr 2527 . . . . . 6  |-  ( f : X -1-1-> Y  ->  X  e.  _V )
57 isacn 7930 . . . . . 6  |-  ( ( X  e.  _V  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) ) )
5856, 29, 57syl2an 465 . . . . 5  |-  ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  ->  ( X  e. AC  A 
<-> 
A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) ) )
5953, 58mpbird 225 . . . 4  |-  ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  ->  X  e. AC  A )
6059ex 425 . . 3  |-  ( f : X -1-1-> Y  -> 
( Y  e. AC  A  ->  X  e. AC  A ) )
6160exlimiv 1645 . 2  |-  ( E. f  f : X -1-1-> Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )
621, 61syl 16 1  |-  ( X  ~<_  Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958    \ cdif 3319    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816   class class class wbr 4215   `'ccnv 4880   dom cdm 4881   ran crn 4882   "cima 4884   -->wf 5453   -1-1->wf1 5454   -1-1-onto->wf1o 5456   ` cfv 5457  (class class class)co 6084    ^m cmap 7021    ~<_ cdom 7110  AC wacn 7830
This theorem is referenced by:  acnen2  7941  dfac13  8027  iundomg  8421  iunctb  8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-map 7023  df-dom 7114  df-acn 7834
  Copyright terms: Public domain W3C validator