MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Unicode version

Theorem acneq 7908
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq  |-  ( A  =  C  -> AC  A  = AC  C )

Proof of Theorem acneq
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2490 . . . 4  |-  ( A  =  C  ->  ( A  e.  _V  <->  C  e.  _V ) )
2 oveq2 6075 . . . . 5  |-  ( A  =  C  ->  (
( ~P x  \  { (/) } )  ^m  A )  =  ( ( ~P x  \  { (/) } )  ^m  C ) )
3 raleq 2891 . . . . . 6  |-  ( A  =  C  ->  ( A. y  e.  A  ( g `  y
)  e.  ( f `
 y )  <->  A. y  e.  C  ( g `  y )  e.  ( f `  y ) ) )
43exbidv 1636 . . . . 5  |-  ( A  =  C  ->  ( E. g A. y  e.  A  ( g `  y )  e.  ( f `  y )  <->  E. g A. y  e.  C  ( g `  y )  e.  ( f `  y ) ) )
52, 4raleqbidv 2903 . . . 4  |-  ( A  =  C  ->  ( A. f  e.  (
( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y )  <->  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) )
61, 5anbi12d 692 . . 3  |-  ( A  =  C  ->  (
( A  e.  _V  /\ 
A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) )  <-> 
( C  e.  _V  /\ 
A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) ) )
76abbidv 2544 . 2  |-  ( A  =  C  ->  { x  |  ( A  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) ) }  =  { x  |  ( C  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) } )
8 df-acn 7813 . 2  |- AC  A  =  { x  |  ( A  e.  _V  /\  A. f  e.  ( ( ~P x  \  { (/)
} )  ^m  A
) E. g A. y  e.  A  (
g `  y )  e.  ( f `  y
) ) }
9 df-acn 7813 . 2  |- AC  C  =  { x  |  ( C  e.  _V  /\  A. f  e.  ( ( ~P x  \  { (/)
} )  ^m  C
) E. g A. y  e.  C  (
g `  y )  e.  ( f `  y
) ) }
107, 8, 93eqtr4g 2487 1  |-  ( A  =  C  -> AC  A  = AC  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2416   A.wral 2692   _Vcvv 2943    \ cdif 3304   (/)c0 3615   ~Pcpw 3786   {csn 3801   ` cfv 5440  (class class class)co 6067    ^m cmap 7004  AC wacn 7809
This theorem is referenced by:  acndom  7916  dfacacn  8005  dfac13  8006
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-iota 5404  df-fv 5448  df-ov 6070  df-acn 7813
  Copyright terms: Public domain W3C validator