MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Unicode version

Theorem acnlem 7864
Description: Construct a mapping satisfying the consequent of isacn 7860. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Distinct variable groups:    f, g, x, A    B, g
Allowed substitution hints:    B( x, f)    V( x, f, g)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 5696 . . . . . 6  |-  ( f `
 x )  C_  U.
ran  f
2 simpr 448 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  ( f `  x ) )
31, 2sseldi 3291 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  U. ran  f
)
43ralimiaa 2725 . . . 4  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  B  e.  U.
ran  f )
5 eqid 2389 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65fmpt 5831 . . . 4  |-  ( A. x  e.  A  B  e.  U. ran  f  <->  ( x  e.  A  |->  B ) : A --> U. ran  f )
74, 6sylib 189 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  ( x  e.  A  |->  B ) : A --> U. ran  f )
8 id 20 . . 3  |-  ( A  e.  V  ->  A  e.  V )
9 vex 2904 . . . . . 6  |-  f  e. 
_V
109rnex 5075 . . . . 5  |-  ran  f  e.  _V
1110uniex 4647 . . . 4  |-  U. ran  f  e.  _V
12 fex2 5545 . . . 4  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V  /\  U. ran  f  e.  _V )  ->  ( x  e.  A  |->  B )  e.  _V )
1311, 12mp3an3 1268 . . 3  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V )  ->  (
x  e.  A  |->  B )  e.  _V )
147, 8, 13syl2anr 465 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  (
x  e.  A  |->  B )  e.  _V )
155fvmpt2 5753 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
1615, 2eqeltrd 2463 . . . 4  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1716ralimiaa 2725 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1817adantl 453 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
19 nfmpt1 4241 . . . . 5  |-  F/_ x
( x  e.  A  |->  B )
2019nfeq2 2536 . . . 4  |-  F/ x  g  =  ( x  e.  A  |->  B )
21 fveq1 5669 . . . . 5  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( g `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
2221eleq1d 2455 . . . 4  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( ( g `  x )  e.  ( f `  x )  <-> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2320, 22ralbid 2669 . . 3  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2423spcegv 2982 . 2  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
2514, 18, 24sylc 58 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2651   _Vcvv 2901   U.cuni 3959    e. cmpt 4209   ran crn 4821   -->wf 5392   ` cfv 5396
This theorem is referenced by:  numacn  7865  acndom  7867  acndom2  7870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-fv 5404
  Copyright terms: Public domain W3C validator