MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiel2 Structured version   Unicode version

Theorem acsfiel2 13872
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
acsfiel2  |-  ( ( C  e.  (ACS `  X )  /\  S  C_  X )  ->  ( S  e.  C  <->  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) )
Distinct variable groups:    y, C    y, F    y, S    y, X

Proof of Theorem acsfiel2
StepHypRef Expression
1 isacs2.f . . 3  |-  F  =  (mrCls `  C )
21acsfiel 13871 . 2  |-  ( C  e.  (ACS `  X
)  ->  ( S  e.  C  <->  ( S  C_  X  /\  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) ) )
32baibd 876 1  |-  ( ( C  e.  (ACS `  X )  /\  S  C_  X )  ->  ( S  e.  C  <->  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   ` cfv 5446   Fincfn 7101  mrClscmrc 13800  ACScacs 13802
This theorem is referenced by:  mreacs  13875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-mre 13803  df-mrc 13804  df-acs 13806
  Copyright terms: Public domain W3C validator