MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspi Unicode version

Theorem addasspi 8707
Description: Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addasspi  |-  ( ( A  +N  B )  +N  C )  =  ( A  +N  ( B  +N  C ) )

Proof of Theorem addasspi
StepHypRef Expression
1 pinn 8690 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 8690 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 8690 . . . 4  |-  ( C  e.  N.  ->  C  e.  om )
4 nnaass 6803 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
51, 2, 3, 4syl3an 1226 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
6 addclpi 8704 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  e.  N. )
7 addpiord 8696 . . . . . 6  |-  ( ( ( A  +N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C
)  =  ( ( A  +N  B )  +o  C ) )
86, 7sylan 458 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +N  B
)  +o  C ) )
9 addpiord 8696 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
109oveq1d 6037 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  +o  C
)  =  ( ( A  +o  B )  +o  C ) )
1110adantr 452 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +o  C )  =  ( ( A  +o  B
)  +o  C ) )
128, 11eqtrd 2421 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +o  B
)  +o  C ) )
13123impa 1148 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( ( A  +o  B )  +o  C ) )
14 addclpi 8704 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  e.  N. )
15 addpiord 8696 . . . . . 6  |-  ( ( A  e.  N.  /\  ( B  +N  C
)  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +N  C
) ) )
1614, 15sylan2 461 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +N  C ) ) )
17 addpiord 8696 . . . . . . 7  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  =  ( B  +o  C ) )
1817oveq2d 6038 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  +o  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C
) ) )
1918adantl 453 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +o  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
2016, 19eqtrd 2421 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
21203impb 1149 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C ) ) )
225, 13, 213eqtr4d 2431 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( A  +N  ( B  +N  C
) ) )
23 dmaddpi 8702 . . 3  |-  dom  +N  =  ( N.  X.  N. )
24 0npi 8694 . . 3  |-  -.  (/)  e.  N.
2523, 24ndmovass 6176 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C
)  =  ( A  +N  ( B  +N  C ) ) )
2622, 25pm2.61i 158 1  |-  ( ( A  +N  B )  +N  C )  =  ( A  +N  ( B  +N  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   omcom 4787  (class class class)co 6022    +o coa 6659   N.cnpi 8654    +N cpli 8655
This theorem is referenced by:  addassnq  8770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-recs 6571  df-rdg 6606  df-oadd 6666  df-ni 8684  df-pli 8685
  Copyright terms: Public domain W3C validator