MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpr Unicode version

Theorem addcanpr 8603
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
)

Proof of Theorem addcanpr
StepHypRef Expression
1 addclpr 8575 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
2 eleq1 2316 . . . . 5  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( ( A  +P.  B )  e. 
P. 
<->  ( A  +P.  C
)  e.  P. )
)
3 dmplp 8569 . . . . . 6  |-  dom  +P.  =  ( P.  X.  P. )
4 0npr 8549 . . . . . 6  |-  -.  (/)  e.  P.
53, 4ndmovrcl 5905 . . . . 5  |-  ( ( A  +P.  C )  e.  P.  ->  ( A  e.  P.  /\  C  e.  P. ) )
62, 5syl6bi 221 . . . 4  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( ( A  +P.  B )  e. 
P.  ->  ( A  e. 
P.  /\  C  e.  P. ) ) )
71, 6syl5com 28 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  -> 
( A  e.  P.  /\  C  e.  P. )
) )
8 ltapr 8602 . . . . . . . 8  |-  ( A  e.  P.  ->  ( B  <P  C  <->  ( A  +P.  B )  <P  ( A  +P.  C ) ) )
9 ltapr 8602 . . . . . . . 8  |-  ( A  e.  P.  ->  ( C  <P  B  <->  ( A  +P.  C )  <P  ( A  +P.  B ) ) )
108, 9orbi12d 693 . . . . . . 7  |-  ( A  e.  P.  ->  (
( B  <P  C  \/  C  <P  B )  <->  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1110notbid 287 . . . . . 6  |-  ( A  e.  P.  ->  ( -.  ( B  <P  C  \/  C  <P  B )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1211ad2antrr 709 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( -.  ( B  <P  C  \/  C  <P  B )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
13 ltsopr 8589 . . . . . . 7  |-  <P  Or  P.
14 sotrieq 4278 . . . . . . 7  |-  ( ( 
<P  Or  P.  /\  ( B  e.  P.  /\  C  e.  P. ) )  -> 
( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
1513, 14mpan 654 . . . . . 6  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
1615ad2ant2l 729 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
17 addclpr 8575 . . . . . 6  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  +P.  C
)  e.  P. )
18 sotrieq 4278 . . . . . . 7  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( A  +P.  C )  e.  P. ) )  ->  ( ( A  +P.  B )  =  ( A  +P.  C
)  <->  -.  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1913, 18mpan 654 . . . . . 6  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( A  +P.  C )  e.  P. )  -> 
( ( A  +P.  B )  =  ( A  +P.  C )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
201, 17, 19syl2an 465 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( ( A  +P.  B )  =  ( A  +P.  C
)  <->  -.  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
2112, 16, 203bitr4d 278 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( B  =  C  <->  ( A  +P.  B )  =  ( A  +P.  C ) ) )
2221exbiri 608 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  e. 
P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C ) ) )
237, 22syld 42 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  -> 
( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
) )
2423pm2.43d 46 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3963    Or wor 4250  (class class class)co 5757   P.cnp 8414    +P. cpp 8416    <P cltp 8418
This theorem is referenced by:  enrer  8623  mulcmpblnr  8629  mulgt0sr  8660
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-omul 6417  df-er 6593  df-ni 8429  df-pli 8430  df-mi 8431  df-lti 8432  df-plpq 8465  df-mpq 8466  df-ltpq 8467  df-enq 8468  df-nq 8469  df-erq 8470  df-plq 8471  df-mq 8472  df-1nq 8473  df-rq 8474  df-ltnq 8475  df-np 8538  df-plp 8540  df-ltp 8542
  Copyright terms: Public domain W3C validator