MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpr Unicode version

Theorem addcanpr 8817
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
)

Proof of Theorem addcanpr
StepHypRef Expression
1 addclpr 8789 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
2 eleq1 2426 . . . . 5  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( ( A  +P.  B )  e. 
P. 
<->  ( A  +P.  C
)  e.  P. )
)
3 dmplp 8783 . . . . . 6  |-  dom  +P.  =  ( P.  X.  P. )
4 0npr 8763 . . . . . 6  |-  -.  (/)  e.  P.
53, 4ndmovrcl 6133 . . . . 5  |-  ( ( A  +P.  C )  e.  P.  ->  ( A  e.  P.  /\  C  e.  P. ) )
62, 5syl6bi 219 . . . 4  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( ( A  +P.  B )  e. 
P.  ->  ( A  e. 
P.  /\  C  e.  P. ) ) )
71, 6syl5com 26 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  -> 
( A  e.  P.  /\  C  e.  P. )
) )
8 ltapr 8816 . . . . . . . 8  |-  ( A  e.  P.  ->  ( B  <P  C  <->  ( A  +P.  B )  <P  ( A  +P.  C ) ) )
9 ltapr 8816 . . . . . . . 8  |-  ( A  e.  P.  ->  ( C  <P  B  <->  ( A  +P.  C )  <P  ( A  +P.  B ) ) )
108, 9orbi12d 690 . . . . . . 7  |-  ( A  e.  P.  ->  (
( B  <P  C  \/  C  <P  B )  <->  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1110notbid 285 . . . . . 6  |-  ( A  e.  P.  ->  ( -.  ( B  <P  C  \/  C  <P  B )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1211ad2antrr 706 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( -.  ( B  <P  C  \/  C  <P  B )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
13 ltsopr 8803 . . . . . . 7  |-  <P  Or  P.
14 sotrieq 4444 . . . . . . 7  |-  ( ( 
<P  Or  P.  /\  ( B  e.  P.  /\  C  e.  P. ) )  -> 
( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
1513, 14mpan 651 . . . . . 6  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
1615ad2ant2l 726 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
17 addclpr 8789 . . . . . 6  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  +P.  C
)  e.  P. )
18 sotrieq 4444 . . . . . . 7  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( A  +P.  C )  e.  P. ) )  ->  ( ( A  +P.  B )  =  ( A  +P.  C
)  <->  -.  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1913, 18mpan 651 . . . . . 6  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( A  +P.  C )  e.  P. )  -> 
( ( A  +P.  B )  =  ( A  +P.  C )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
201, 17, 19syl2an 463 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( ( A  +P.  B )  =  ( A  +P.  C
)  <->  -.  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
2112, 16, 203bitr4d 276 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( B  =  C  <->  ( A  +P.  B )  =  ( A  +P.  C ) ) )
2221exbiri 605 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  e. 
P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C ) ) )
237, 22syld 40 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  -> 
( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
) )
2423pm2.43d 44 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1647    e. wcel 1715   class class class wbr 4125    Or wor 4416  (class class class)co 5981   P.cnp 8628    +P. cpp 8630    <P cltp 8632
This theorem is referenced by:  enrer  8837  mulcmpblnr  8843  mulgt0sr  8874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-omul 6626  df-er 6802  df-ni 8643  df-pli 8644  df-mi 8645  df-lti 8646  df-plpq 8679  df-mpq 8680  df-ltpq 8681  df-enq 8682  df-nq 8683  df-erq 8684  df-plq 8685  df-mq 8686  df-1nq 8687  df-rq 8688  df-ltnq 8689  df-np 8752  df-plp 8754  df-ltp 8756
  Copyright terms: Public domain W3C validator