MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpr Unicode version

Theorem addcanpr 8666
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
)

Proof of Theorem addcanpr
StepHypRef Expression
1 addclpr 8638 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
2 eleq1 2344 . . . . 5  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( ( A  +P.  B )  e. 
P. 
<->  ( A  +P.  C
)  e.  P. )
)
3 dmplp 8632 . . . . . 6  |-  dom  +P.  =  ( P.  X.  P. )
4 0npr 8612 . . . . . 6  |-  -.  (/)  e.  P.
53, 4ndmovrcl 5968 . . . . 5  |-  ( ( A  +P.  C )  e.  P.  ->  ( A  e.  P.  /\  C  e.  P. ) )
62, 5syl6bi 219 . . . 4  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( ( A  +P.  B )  e. 
P.  ->  ( A  e. 
P.  /\  C  e.  P. ) ) )
71, 6syl5com 26 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  -> 
( A  e.  P.  /\  C  e.  P. )
) )
8 ltapr 8665 . . . . . . . 8  |-  ( A  e.  P.  ->  ( B  <P  C  <->  ( A  +P.  B )  <P  ( A  +P.  C ) ) )
9 ltapr 8665 . . . . . . . 8  |-  ( A  e.  P.  ->  ( C  <P  B  <->  ( A  +P.  C )  <P  ( A  +P.  B ) ) )
108, 9orbi12d 690 . . . . . . 7  |-  ( A  e.  P.  ->  (
( B  <P  C  \/  C  <P  B )  <->  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1110notbid 285 . . . . . 6  |-  ( A  e.  P.  ->  ( -.  ( B  <P  C  \/  C  <P  B )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1211ad2antrr 706 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( -.  ( B  <P  C  \/  C  <P  B )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
13 ltsopr 8652 . . . . . . 7  |-  <P  Or  P.
14 sotrieq 4340 . . . . . . 7  |-  ( ( 
<P  Or  P.  /\  ( B  e.  P.  /\  C  e.  P. ) )  -> 
( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
1513, 14mpan 651 . . . . . 6  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
1615ad2ant2l 726 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( B  =  C  <->  -.  ( B  <P  C  \/  C  <P  B ) ) )
17 addclpr 8638 . . . . . 6  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  +P.  C
)  e.  P. )
18 sotrieq 4340 . . . . . . 7  |-  ( ( 
<P  Or  P.  /\  (
( A  +P.  B
)  e.  P.  /\  ( A  +P.  C )  e.  P. ) )  ->  ( ( A  +P.  B )  =  ( A  +P.  C
)  <->  -.  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
1913, 18mpan 651 . . . . . 6  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( A  +P.  C )  e.  P. )  -> 
( ( A  +P.  B )  =  ( A  +P.  C )  <->  -.  (
( A  +P.  B
)  <P  ( A  +P.  C )  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
201, 17, 19syl2an 463 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( ( A  +P.  B )  =  ( A  +P.  C
)  <->  -.  ( ( A  +P.  B )  <P 
( A  +P.  C
)  \/  ( A  +P.  C )  <P 
( A  +P.  B
) ) ) )
2112, 16, 203bitr4d 276 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( A  e.  P.  /\  C  e.  P. )
)  ->  ( B  =  C  <->  ( A  +P.  B )  =  ( A  +P.  C ) ) )
2221exbiri 605 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  e. 
P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C ) ) )
237, 22syld 40 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  -> 
( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
) )
2423pm2.43d 44 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  B  =  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1685   class class class wbr 4024    Or wor 4312  (class class class)co 5820   P.cnp 8477    +P. cpp 8479    <P cltp 8481
This theorem is referenced by:  enrer  8686  mulcmpblnr  8692  mulgt0sr  8723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-er 6656  df-ni 8492  df-pli 8493  df-mi 8494  df-lti 8495  df-plpq 8528  df-mpq 8529  df-ltpq 8530  df-enq 8531  df-nq 8532  df-erq 8533  df-plq 8534  df-mq 8535  df-1nq 8536  df-rq 8537  df-ltnq 8538  df-np 8601  df-plp 8603  df-ltp 8605
  Copyright terms: Public domain W3C validator