MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpr Unicode version

Theorem addclpr 8637
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
Dummy variables  x  y  z  w  v 
f  g  h are mutually distinct and distinct from all other variables.

Proof of Theorem addclpr
StepHypRef Expression
1 df-plp 8602 . 2  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  +Q  z ) } )
2 addclnq 8564 . 2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
3 ltanq 8590 . 2  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
4 addcomnq 8570 . 2  |-  ( x  +Q  y )  =  ( y  +Q  x
)
5 addclprlem2 8636 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  x  e.  ( A  +P.  B ) ) )
61, 2, 3, 4, 5genpcl 8627 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1685  (class class class)co 5819    +Q cplq 8472   P.cnp 8476    +P. cpp 8478
This theorem is referenced by:  addasspr  8641  distrlem1pr  8644  distrlem4pr  8645  ltaddpr  8653  ltexprlem7  8661  ltaprlem  8663  ltapr  8664  addcanpr  8665  enrer  8685  addcmpblnr  8689  mulcmpblnr  8691  ltsrpr  8694  1sr  8698  m1r  8699  addclsr  8700  mulclsr  8701  addasssr  8705  mulasssr  8707  distrsr  8708  m1p1sr  8709  m1m1sr  8710  ltsosr  8711  0lt1sr  8712  0idsr  8714  1idsr  8715  00sr  8716  ltasr  8717  recexsrlem  8720  mulgt0sr  8722  mappsrpr  8725
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-rq 8536  df-ltnq 8537  df-np 8600  df-plp 8602
  Copyright terms: Public domain W3C validator