MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Structured version   Unicode version

Theorem addclprlem1 8895
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )

Proof of Theorem addclprlem1
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8870 . . 3  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
2 ltrnq 8858 . . . . 5  |-  ( x 
<Q  ( g  +Q  h
)  <->  ( *Q `  ( g  +Q  h
) )  <Q  ( *Q `  x ) )
3 ltmnq 8851 . . . . . 6  |-  ( x  e.  Q.  ->  (
( *Q `  (
g  +Q  h ) )  <Q  ( *Q `  x )  <->  ( x  .Q  ( *Q `  (
g  +Q  h ) ) )  <Q  (
x  .Q  ( *Q
`  x ) ) ) )
4 ovex 6108 . . . . . . 7  |-  ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  e. 
_V
5 ovex 6108 . . . . . . 7  |-  ( x  .Q  ( *Q `  x ) )  e. 
_V
6 ltmnq 8851 . . . . . . 7  |-  ( w  e.  Q.  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
7 vex 2961 . . . . . . 7  |-  g  e. 
_V
8 mulcomnq 8832 . . . . . . 7  |-  ( y  .Q  z )  =  ( z  .Q  y
)
94, 5, 6, 7, 8caovord2 6261 . . . . . 6  |-  ( g  e.  Q.  ->  (
( x  .Q  ( *Q `  ( g  +Q  h ) ) ) 
<Q  ( x  .Q  ( *Q `  x ) )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  ( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
103, 9sylan9bbr 683 . . . . 5  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( *Q `  ( g  +Q  h
) )  <Q  ( *Q `  x )  <->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
112, 10syl5bb 250 . . . 4  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  ( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
12 recidnq 8844 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
1312oveq1d 6098 . . . . . 6  |-  ( x  e.  Q.  ->  (
( x  .Q  ( *Q `  x ) )  .Q  g )  =  ( 1Q  .Q  g
) )
14 mulcomnq 8832 . . . . . . 7  |-  ( 1Q 
.Q  g )  =  ( g  .Q  1Q )
15 mulidnq 8842 . . . . . . 7  |-  ( g  e.  Q.  ->  (
g  .Q  1Q )  =  g )
1614, 15syl5eq 2482 . . . . . 6  |-  ( g  e.  Q.  ->  ( 1Q  .Q  g )  =  g )
1713, 16sylan9eqr 2492 . . . . 5  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( x  .Q  ( *Q `  x ) )  .Q  g )  =  g )
1817breq2d 4226 . . . 4  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  <Q  (
( x  .Q  ( *Q `  x ) )  .Q  g )  <->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
g ) )
1911, 18bitrd 246 . . 3  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  g ) )
201, 19sylan 459 . 2  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  g ) )
21 prcdnq 8872 . . 3  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  <Q  g  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g )  e.  A ) )
2221adantr 453 . 2  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
g  ->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  e.  A ) )
2320, 22sylbid 208 1  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Q.cnq 8729   1Qc1q 8730    +Q cplq 8732    .Q cmq 8733   *Qcrq 8734    <Q cltq 8735   P.cnp 8736
This theorem is referenced by:  addclprlem2  8896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-omul 6731  df-er 6907  df-ni 8751  df-mi 8753  df-lti 8754  df-mpq 8788  df-ltpq 8789  df-enq 8790  df-nq 8791  df-erq 8792  df-mq 8794  df-1nq 8795  df-rq 8796  df-ltnq 8797  df-np 8860
  Copyright terms: Public domain W3C validator