MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Unicode version

Theorem addclprlem1 8636
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )

Proof of Theorem addclprlem1
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8611 . . 3  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
2 ltrnq 8599 . . . . 5  |-  ( x 
<Q  ( g  +Q  h
)  <->  ( *Q `  ( g  +Q  h
) )  <Q  ( *Q `  x ) )
3 ltmnq 8592 . . . . . 6  |-  ( x  e.  Q.  ->  (
( *Q `  (
g  +Q  h ) )  <Q  ( *Q `  x )  <->  ( x  .Q  ( *Q `  (
g  +Q  h ) ) )  <Q  (
x  .Q  ( *Q
`  x ) ) ) )
4 ovex 5845 . . . . . . 7  |-  ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  e. 
_V
5 ovex 5845 . . . . . . 7  |-  ( x  .Q  ( *Q `  x ) )  e. 
_V
6 ltmnq 8592 . . . . . . 7  |-  ( w  e.  Q.  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
7 vex 2792 . . . . . . 7  |-  g  e. 
_V
8 mulcomnq 8573 . . . . . . 7  |-  ( y  .Q  z )  =  ( z  .Q  y
)
94, 5, 6, 7, 8caovord2 5994 . . . . . 6  |-  ( g  e.  Q.  ->  (
( x  .Q  ( *Q `  ( g  +Q  h ) ) ) 
<Q  ( x  .Q  ( *Q `  x ) )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  ( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
103, 9sylan9bbr 681 . . . . 5  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( *Q `  ( g  +Q  h
) )  <Q  ( *Q `  x )  <->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
112, 10syl5bb 248 . . . 4  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  ( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
12 recidnq 8585 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
1312oveq1d 5835 . . . . . 6  |-  ( x  e.  Q.  ->  (
( x  .Q  ( *Q `  x ) )  .Q  g )  =  ( 1Q  .Q  g
) )
14 mulcomnq 8573 . . . . . . 7  |-  ( 1Q 
.Q  g )  =  ( g  .Q  1Q )
15 mulidnq 8583 . . . . . . 7  |-  ( g  e.  Q.  ->  (
g  .Q  1Q )  =  g )
1614, 15syl5eq 2328 . . . . . 6  |-  ( g  e.  Q.  ->  ( 1Q  .Q  g )  =  g )
1713, 16sylan9eqr 2338 . . . . 5  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( x  .Q  ( *Q `  x ) )  .Q  g )  =  g )
1817breq2d 4036 . . . 4  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  <Q  (
( x  .Q  ( *Q `  x ) )  .Q  g )  <->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
g ) )
1911, 18bitrd 244 . . 3  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  g ) )
201, 19sylan 457 . 2  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  g ) )
21 prcdnq 8613 . . 3  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  <Q  g  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g )  e.  A ) )
2221adantr 451 . 2  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
g  ->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  e.  A ) )
2320, 22sylbid 206 1  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Q.cnq 8470   1Qc1q 8471    +Q cplq 8473    .Q cmq 8474   *Qcrq 8475    <Q cltq 8476   P.cnp 8477
This theorem is referenced by:  addclprlem2  8637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-er 6656  df-ni 8492  df-mi 8494  df-lti 8495  df-mpq 8529  df-ltpq 8530  df-enq 8531  df-nq 8532  df-erq 8533  df-mq 8535  df-1nq 8536  df-rq 8537  df-ltnq 8538  df-np 8601
  Copyright terms: Public domain W3C validator