MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclsr Unicode version

Theorem addclsr 8700
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclsr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  R. )
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.

Proof of Theorem addclsr
StepHypRef Expression
1 df-nr 8677 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5826 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  ( A  +R  [ <. z ,  w >. ]  ~R  ) )
32eleq1d 2350 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
4 oveq2 5827 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  +R  [ <. z ,  w >. ]  ~R  )  =  ( A  +R  B ) )
54eleq1d 2350 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  +R  [
<. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  +R  B )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
6 addsrpr 8692 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  )
7 addclpr 8637 . . . . . . 7  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  +P.  z
)  e.  P. )
8 addclpr 8637 . . . . . . 7  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  +P.  w
)  e.  P. )
97, 8anim12i 551 . . . . . 6  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
109an4s 801 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
11 opelxpi 4720 . . . . 5  |-  ( ( ( x  +P.  z
)  e.  P.  /\  ( y  +P.  w
)  e.  P. )  -> 
<. ( x  +P.  z
) ,  ( y  +P.  w ) >.  e.  ( P.  X.  P. ) )
12 enrex 8687 . . . . . 6  |-  ~R  e.  _V
1312ecelqsi 6710 . . . . 5  |-  ( <.
( x  +P.  z
) ,  ( y  +P.  w ) >.  e.  ( P.  X.  P. )  ->  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
1410, 11, 133syl 20 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
156, 14eqeltrd 2358 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) )
161, 3, 5, 152ecoptocl 6744 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  ( ( P.  X.  P. ) /.  ~R  ) )
1716, 1syl6eleqr 2375 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   <.cop 3644    X. cxp 4686  (class class class)co 5819   [cec 6653   /.cqs 6654   P.cnp 8476    +P. cpp 8478    ~R cer 8483   R.cnr 8484    +R cplr 8488
This theorem is referenced by:  dmaddsr  8702  map2psrpr  8727  axaddf  8762  axmulf  8763  axaddrcl  8769  axaddass  8773  axmulass  8774  axdistr  8775
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-rq 8536  df-ltnq 8537  df-np 8600  df-plp 8602  df-ltp 8604  df-plpr 8674  df-enr 8676  df-nr 8677  df-plr 8678
  Copyright terms: Public domain W3C validator