MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcn2 Unicode version

Theorem addcn2 12061
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 16951 and df-cncf 18376 are not yet available to us. See addcn 18363 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 10373 . . 3  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 978 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 simprl 734 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
4 simpl2 961 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
5 simprr 735 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
63, 4, 5pnpcan2d 9190 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  +  v )  -  ( B  +  v ) )  =  ( u  -  B
) )
76fveq2d 5489 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  =  ( abs `  ( u  -  B ) ) )
87breq1d 4034 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u  +  v )  -  ( B  +  v
) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( A  /  2 ) ) )
9 simpl3 962 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
104, 5, 9pnpcand 9189 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  +  v )  -  ( B  +  C ) )  =  ( v  -  C
) )
1110fveq2d 5489 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  +  v )  -  ( B  +  C )
) )  =  ( abs `  ( v  -  C ) ) )
1211breq1d 4034 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( B  +  v )  -  ( B  +  C
) ) )  < 
( A  /  2
)  <->  ( abs `  (
v  -  C ) )  <  ( A  /  2 ) ) )
138, 12anbi12d 693 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
14 addcl 8814 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
1514adantl 454 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  +  v )  e.  CC )
164, 9addcld 8849 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  C )  e.  CC )
174, 5addcld 8849 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  v )  e.  CC )
18 simpl1 960 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
1918rpred 10385 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
20 abs3lem 11816 . . . . 5  |-  ( ( ( ( u  +  v )  e.  CC  /\  ( B  +  C
)  e.  CC )  /\  ( ( B  +  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2115, 16, 17, 19, 20syl22anc 1185 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2213, 21sylbird 228 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2322ralrimivva 2636 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
24 breq2 4028 . . . . . 6  |-  ( y  =  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  <  y  <->  ( abs `  ( u  -  B
) )  <  ( A  /  2 ) ) )
2524anbi1d 687 . . . . 5  |-  ( y  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
2625imbi1d 310 . . . 4  |-  ( y  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
27262ralbidv 2586 . . 3  |-  ( y  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
28 breq2 4028 . . . . . 6  |-  ( z  =  ( A  / 
2 )  ->  (
( abs `  (
v  -  C ) )  <  z  <->  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) )
2928anbi2d 686 . . . . 5  |-  ( z  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
3029imbi1d 310 . . . 4  |-  ( z  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
31302ralbidv 2586 . . 3  |-  ( z  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
3227, 31rspc2ev 2893 . 2  |-  ( ( ( A  /  2
)  e.  RR+  /\  ( A  /  2 )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
332, 2, 23, 32syl3anc 1184 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731    + caddc 8735    < clt 8862    - cmin 9032    / cdiv 9418   2c2 9790   RR+crp 10349   abscabs 11713
This theorem is referenced by:  subcn2  12062  climadd  12099  rlimadd  12110  addcn  18363
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715
  Copyright terms: Public domain W3C validator