MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsrec Unicode version

Theorem addcnsrec 8944
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 8943 and mulcnsrec 8945. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsrec  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C
) ,  ( B  +R  D ) >. ] `'  _E  )

Proof of Theorem addcnsrec
StepHypRef Expression
1 addcnsr 8936 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )
2 opex 4361 . . . 4  |-  <. A ,  B >.  e.  _V
32ecid 6898 . . 3  |-  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >.
4 opex 4361 . . . 4  |-  <. C ,  D >.  e.  _V
54ecid 6898 . . 3  |-  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >.
63, 5oveq12i 6025 . 2  |-  ( [
<. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  ( <. A ,  B >.  + 
<. C ,  D >. )
7 opex 4361 . . 3  |-  <. ( A  +R  C ) ,  ( B  +R  D
) >.  e.  _V
87ecid 6898 . 2  |-  [ <. ( A  +R  C ) ,  ( B  +R  D ) >. ] `'  _E  =  <. ( A  +R  C ) ,  ( B  +R  D
) >.
91, 6, 83eqtr4g 2437 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C
) ,  ( B  +R  D ) >. ] `'  _E  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   <.cop 3753    _E cep 4426   `'ccnv 4810  (class class class)co 6013   [cec 6832   R.cnr 8668    +R cplr 8672    + caddc 8919
This theorem is referenced by:  axaddass  8957  axdistr  8959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-eprel 4428  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fv 5395  df-ov 6016  df-oprab 6017  df-ec 6836  df-c 8922  df-add 8927
  Copyright terms: Public domain W3C validator