MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpq Structured version   Unicode version

Theorem adderpq 8838
Description: Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpq  |-  ( ( /Q `  A )  +Q  ( /Q `  B ) )  =  ( /Q `  ( A  +pQ  B ) )

Proof of Theorem adderpq
StepHypRef Expression
1 nqercl 8813 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e. 
Q. )
2 nqercl 8813 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e. 
Q. )
3 addpqnq 8820 . . . 4  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( ( /Q `  A )  +Q  ( /Q `  B ) )  =  ( /Q `  ( ( /Q `  A )  +pQ  ( /Q `  B ) ) ) )
41, 2, 3syl2an 465 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  +Q  ( /Q
`  B ) )  =  ( /Q `  ( ( /Q `  A )  +pQ  ( /Q `  B ) ) ) )
5 enqer 8803 . . . . . 6  |-  ~Q  Er  ( N.  X.  N. )
65a1i 11 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ~Q  Er  ( N.  X.  N. )
)
7 nqerrel 8814 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  A  ~Q  ( /Q `  A ) )
87adantr 453 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  A  ~Q  ( /Q `  A
) )
9 elpqn 8807 . . . . . . . . 9  |-  ( ( /Q `  A )  e.  Q.  ->  ( /Q `  A )  e.  ( N.  X.  N. ) )
101, 9syl 16 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e.  ( N.  X.  N. ) )
11 adderpqlem 8836 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  ( /Q `  A
)  <->  ( A  +pQ  B )  ~Q  ( ( /Q `  A ) 
+pQ  B ) ) )
12113exp 1153 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  +pQ  B )  ~Q  (
( /Q `  A
)  +pQ  B )
) ) ) )
1310, 12mpd 15 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( B  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  +pQ  B )  ~Q  (
( /Q `  A
)  +pQ  B )
) ) )
1413imp 420 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  +pQ  B )  ~Q  (
( /Q `  A
)  +pQ  B )
) )
158, 14mpbid 203 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  ~Q  ( ( /Q `  A )  +pQ  B
) )
16 nqerrel 8814 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  B  ~Q  ( /Q `  B ) )
1716adantl 454 . . . . . . 7  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  ~Q  ( /Q `  B
) )
18 elpqn 8807 . . . . . . . . . 10  |-  ( ( /Q `  B )  e.  Q.  ->  ( /Q `  B )  e.  ( N.  X.  N. ) )
192, 18syl 16 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e.  ( N.  X.  N. ) )
20 adderpqlem 8836 . . . . . . . . . 10  |-  ( ( B  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. )
)  ->  ( B  ~Q  ( /Q `  B
)  <->  ( B  +pQ  ( /Q `  A ) )  ~Q  ( ( /Q `  B ) 
+pQ  ( /Q `  A ) ) ) )
21203exp 1153 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( /Q `  B )  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  +pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  +pQ  ( /Q `  A ) ) ) ) ) )
2219, 21mpd 15 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  +pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  +pQ  ( /Q `  A ) ) ) ) )
2310, 22mpan9 457 . . . . . . 7  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  +pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  +pQ  ( /Q `  A ) ) ) )
2417, 23mpbid 203 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( B  +pQ  ( /Q `  A ) )  ~Q  ( ( /Q `  B )  +pQ  ( /Q `  A ) ) )
25 addcompq 8832 . . . . . 6  |-  ( B 
+pQ  ( /Q `  A ) )  =  ( ( /Q `  A )  +pQ  B
)
26 addcompq 8832 . . . . . 6  |-  ( ( /Q `  B ) 
+pQ  ( /Q `  A ) )  =  ( ( /Q `  A )  +pQ  ( /Q `  B ) )
2724, 25, 263brtr3g 4246 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  +pQ  B )  ~Q  ( ( /Q `  A )  +pQ  ( /Q `  B ) ) )
286, 15, 27ertrd 6924 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  ~Q  ( ( /Q `  A )  +pQ  ( /Q `  B ) ) )
29 addpqf 8826 . . . . . 6  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3029fovcl 6178 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  e.  ( N.  X.  N. ) )
3129fovcl 6178 . . . . . 6  |-  ( ( ( /Q `  A
)  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  +pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )
3210, 19, 31syl2an 465 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  +pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )
33 nqereq 8817 . . . . 5  |-  ( ( ( A  +pQ  B
)  e.  ( N. 
X.  N. )  /\  (
( /Q `  A
)  +pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )  ->  (
( A  +pQ  B
)  ~Q  ( ( /Q `  A )  +pQ  ( /Q `  B ) )  <->  ( /Q `  ( A  +pQ  B ) )  =  ( /Q
`  ( ( /Q
`  A )  +pQ  ( /Q `  B ) ) ) ) )
3430, 32, 33syl2anc 644 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( A  +pQ  B
)  ~Q  ( ( /Q `  A )  +pQ  ( /Q `  B ) )  <->  ( /Q `  ( A  +pQ  B ) )  =  ( /Q
`  ( ( /Q
`  A )  +pQ  ( /Q `  B ) ) ) ) )
3528, 34mpbid 203 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( /Q `  ( A  +pQ  B ) )  =  ( /Q `  ( ( /Q `  A ) 
+pQ  ( /Q `  B ) ) ) )
364, 35eqtr4d 2473 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  +Q  ( /Q
`  B ) )  =  ( /Q `  ( A  +pQ  B ) ) )
37 0nnq 8806 . . . . . . . 8  |-  -.  (/)  e.  Q.
38 nqerf 8812 . . . . . . . . . . . 12  |-  /Q :
( N.  X.  N. )
--> Q.
3938fdmi 5599 . . . . . . . . . . 11  |-  dom  /Q  =  ( N.  X.  N. )
4039eleq2i 2502 . . . . . . . . . 10  |-  ( A  e.  dom  /Q  <->  A  e.  ( N.  X.  N. )
)
41 ndmfv 5758 . . . . . . . . . 10  |-  ( -.  A  e.  dom  /Q  ->  ( /Q `  A
)  =  (/) )
4240, 41sylnbir 300 . . . . . . . . 9  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  ( /Q `  A )  =  (/) )
4342eleq1d 2504 . . . . . . . 8  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  (
( /Q `  A
)  e.  Q.  <->  (/)  e.  Q. ) )
4437, 43mtbiri 296 . . . . . . 7  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  -.  ( /Q `  A )  e.  Q. )
4544con4i 125 . . . . . 6  |-  ( ( /Q `  A )  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
4639eleq2i 2502 . . . . . . . . . 10  |-  ( B  e.  dom  /Q  <->  B  e.  ( N.  X.  N. )
)
47 ndmfv 5758 . . . . . . . . . 10  |-  ( -.  B  e.  dom  /Q  ->  ( /Q `  B
)  =  (/) )
4846, 47sylnbir 300 . . . . . . . . 9  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  ( /Q `  B )  =  (/) )
4948eleq1d 2504 . . . . . . . 8  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  (
( /Q `  B
)  e.  Q.  <->  (/)  e.  Q. ) )
5037, 49mtbiri 296 . . . . . . 7  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  -.  ( /Q `  B )  e.  Q. )
5150con4i 125 . . . . . 6  |-  ( ( /Q `  B )  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
5245, 51anim12i 551 . . . . 5  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) ) )
5352con3i 130 . . . 4  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  -.  ( ( /Q `  A )  e. 
Q.  /\  ( /Q `  B )  e.  Q. ) )
54 addnqf 8830 . . . . . 6  |-  +Q  :
( Q.  X.  Q. )
--> Q.
5554fdmi 5599 . . . . 5  |-  dom  +Q  =  ( Q.  X.  Q. )
5655ndmov 6234 . . . 4  |-  ( -.  ( ( /Q `  A )  e.  Q.  /\  ( /Q `  B
)  e.  Q. )  ->  ( ( /Q `  A )  +Q  ( /Q `  B ) )  =  (/) )
5753, 56syl 16 . . 3  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( /Q
`  A )  +Q  ( /Q `  B
) )  =  (/) )
58 0nelxp 4909 . . . . . 6  |-  -.  (/)  e.  ( N.  X.  N. )
5939eleq2i 2502 . . . . . 6  |-  ( (/)  e.  dom  /Q  <->  (/)  e.  ( N.  X.  N. )
)
6058, 59mtbir 292 . . . . 5  |-  -.  (/)  e.  dom  /Q
6129fdmi 5599 . . . . . . 7  |-  dom  +pQ  =  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) )
6261ndmov 6234 . . . . . 6  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  =  (/) )
6362eleq1d 2504 . . . . 5  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( A 
+pQ  B )  e. 
dom  /Q  <->  (/)  e.  dom  /Q ) )
6460, 63mtbiri 296 . . . 4  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  -.  ( A  +pQ  B )  e.  dom  /Q )
65 ndmfv 5758 . . . 4  |-  ( -.  ( A  +pQ  B
)  e.  dom  /Q  ->  ( /Q `  ( A  +pQ  B ) )  =  (/) )
6664, 65syl 16 . . 3  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( /Q `  ( A  +pQ  B ) )  =  (/) )
6757, 66eqtr4d 2473 . 2  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( /Q
`  A )  +Q  ( /Q `  B
) )  =  ( /Q `  ( A 
+pQ  B ) ) )
6836, 67pm2.61i 159 1  |-  ( ( /Q `  A )  +Q  ( /Q `  B ) )  =  ( /Q `  ( A  +pQ  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   (/)c0 3630   class class class wbr 4215    X. cxp 4879   dom cdm 4881   ` cfv 5457  (class class class)co 6084    Er wer 6905   N.cnpi 8724    +pQ cplpq 8728    ~Q ceq 8731   Q.cnq 8732   /Qcerq 8734    +Q cplq 8735
This theorem is referenced by:  addassnq  8840  distrnq  8843  ltexnq  8857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-omul 6732  df-er 6908  df-ni 8754  df-pli 8755  df-mi 8756  df-lti 8757  df-plpq 8790  df-enq 8793  df-nq 8794  df-erq 8795  df-plq 8796  df-1nq 8798
  Copyright terms: Public domain W3C validator