MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge01 Unicode version

Theorem addge01 9300
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
addge01  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )

Proof of Theorem addge01
StepHypRef Expression
1 0re 8854 . . . 4  |-  0  e.  RR
2 leadd2 9259 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
0  <_  B  <->  ( A  +  0 )  <_ 
( A  +  B
) ) )
31, 2mp3an1 1264 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  B  <->  ( A  +  0 )  <_  ( A  +  B ) ) )
43ancoms 439 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  ( A  +  0 )  <_  ( A  +  B ) ) )
5 recn 8843 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addid1d 9028 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
76adantr 451 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  0 )  =  A )
87breq1d 4049 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  + 
0 )  <_  ( A  +  B )  <->  A  <_  ( A  +  B ) ) )
94, 8bitrd 244 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   0cc0 8753    + caddc 8756    <_ cle 8884
This theorem is referenced by:  addge02  9301  subge02  9305  addge01d  9376  nn0addge1  10026  flbi2  10963  hashdom  11377  atanlogaddlem  20225  ressatans  20246  cdj1i  23029  cdj3lem2b  23033  axsegconlem7  24623  axsegconlem10  24626  clscnc  26113  wallispilem4  27920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889
  Copyright terms: Public domain W3C validator