Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Unicode version

Theorem addltmulALT 23937
Description: A proof readability experiment for addltmul 10192. (Contributed by Stefan Allan, 30-Oct-2010.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 448 . . . . 5  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
2  <  A )
2 2re 10058 . . . . . . . 8  |-  2  e.  RR
32a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
2  e.  RR )
4 simpl 444 . . . . . . 7  |-  ( ( A  e.  RR  /\  2  <  A )  ->  A  e.  RR )
5 1re 9079 . . . . . . . 8  |-  1  e.  RR
65a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
1  e.  RR )
7 ltsub1 9513 . . . . . . 7  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
83, 4, 6, 7syl3anc 1184 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
( 2  <  A  <->  ( 2  -  1 )  <  ( A  - 
1 ) ) )
9 2cn 10059 . . . . . . . . 9  |-  2  e.  CC
10 ax-1cn 9037 . . . . . . . . 9  |-  1  e.  CC
11 df-2 10047 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
1211eqcomi 2439 . . . . . . . . 9  |-  ( 1  +  1 )  =  2
139, 10, 10, 12subaddrii 9378 . . . . . . . 8  |-  ( 2  -  1 )  =  1
1413breq1i 4211 . . . . . . 7  |-  ( ( 2  -  1 )  <  ( A  - 
1 )  <->  1  <  ( A  -  1 ) )
1514a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
( ( 2  -  1 )  <  ( A  -  1 )  <->  1  <  ( A  -  1 ) ) )
168, 15bitrd 245 . . . . 5  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
( 2  <  A  <->  1  <  ( A  - 
1 ) ) )
171, 16mpbid 202 . . . 4  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
1  <  ( A  -  1 ) )
18 simpr 448 . . . . 5  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
2  <  B )
192a1i 11 . . . . . . 7  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
2  e.  RR )
20 simpl 444 . . . . . . 7  |-  ( ( B  e.  RR  /\  2  <  B )  ->  B  e.  RR )
215a1i 11 . . . . . . 7  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
1  e.  RR )
22 ltsub1 9513 . . . . . . 7  |-  ( ( 2  e.  RR  /\  B  e.  RR  /\  1  e.  RR )  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
2319, 20, 21, 22syl3anc 1184 . . . . . 6  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
( 2  <  B  <->  ( 2  -  1 )  <  ( B  - 
1 ) ) )
2413breq1i 4211 . . . . . . 7  |-  ( ( 2  -  1 )  <  ( B  - 
1 )  <->  1  <  ( B  -  1 ) )
2524a1i 11 . . . . . 6  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
( ( 2  -  1 )  <  ( B  -  1 )  <->  1  <  ( B  -  1 ) ) )
2623, 25bitrd 245 . . . . 5  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
( 2  <  B  <->  1  <  ( B  - 
1 ) ) )
2718, 26mpbid 202 . . . 4  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
1  <  ( B  -  1 ) )
2817, 27anim12i 550 . . 3  |-  ( ( ( A  e.  RR  /\  2  <  A )  /\  ( B  e.  RR  /\  2  < 
B ) )  -> 
( 1  <  ( A  -  1 )  /\  1  <  ( B  -  1 ) ) )
2928an4s 800 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
1  <  ( A  -  1 )  /\  1  <  ( B  - 
1 ) ) )
30 peano2rem 9356 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
31 peano2rem 9356 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
3230, 31anim12i 550 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR ) )
3332anim1i 552 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
( ( ( A  -  1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  (
1  <  ( A  -  1 )  /\  1  <  ( B  - 
1 ) ) ) )
34 mulgt1 9858 . . . . . 6  |-  ( ( ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3533, 34syl 16 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3635ex 424 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
3736adantr 452 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
( 1  <  ( A  -  1 )  /\  1  <  ( B  -  1 ) )  ->  1  <  ( ( A  -  1 )  x.  ( B  -  1 ) ) ) )
38 recn 9069 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
3910a1i 11 . . . . . . . . 9  |-  ( A  e.  RR  ->  1  e.  CC )
4038, 39jca 519 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  e.  CC  /\  1  e.  CC ) )
41 recn 9069 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  e.  CC )
4210a1i 11 . . . . . . . . 9  |-  ( B  e.  RR  ->  1  e.  CC )
4341, 42jca 519 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  e.  CC  /\  1  e.  CC ) )
4440, 43anim12i 550 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) ) )
45 mulsub 9465 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
4644, 45syl 16 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
4746breq2d 4216 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4847biimpd 199 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  ->  1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4948adantr 452 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) )  -> 
1  <  ( (
( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
5010mulid2i 9082 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
51 eqcom 2437 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  =  1  <->  1  =  ( 1  x.  1 ) )
5251biimpi 187 . . . . . . . . 9  |-  ( ( 1  x.  1 )  =  1  ->  1  =  ( 1  x.  1 ) )
5350, 52mp1i 12 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  1  =  ( 1  x.  1 ) )
5453oveq2d 6088 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  1 )  =  ( ( A  x.  B )  +  ( 1  x.  1 ) ) )
55 mulid1 9077 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
56 eqcom 2437 . . . . . . . . . . . 12  |-  ( ( A  x.  1 )  =  A  <->  A  =  ( A  x.  1
) )
5756biimpi 187 . . . . . . . . . . 11  |-  ( ( A  x.  1 )  =  A  ->  A  =  ( A  x.  1 ) )
5855, 57syl 16 . . . . . . . . . 10  |-  ( A  e.  CC  ->  A  =  ( A  x.  1 ) )
5938, 58syl 16 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =  ( A  x.  1 ) )
6059adantr 452 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  =  ( A  x.  1 ) )
61 mulid1 9077 . . . . . . . . . . 11  |-  ( B  e.  CC  ->  ( B  x.  1 )  =  B )
6241, 61syl 16 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  x.  1 )  =  B )
63 eqcom 2437 . . . . . . . . . . 11  |-  ( ( B  x.  1 )  =  B  <->  B  =  ( B  x.  1
) )
6463biimpi 187 . . . . . . . . . 10  |-  ( ( B  x.  1 )  =  B  ->  B  =  ( B  x.  1 ) )
6562, 64syl 16 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  =  ( B  x.  1 ) )
6665adantl 453 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  =  ( B  x.  1 ) )
6760, 66oveq12d 6090 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )
6854, 67oveq12d 6090 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B )
)  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
6968breq2d 4216 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
70 readdcl 9062 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
715a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  1  e.  RR )
72 remulcl 9064 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
73 readdcl 9062 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( A  x.  B )  +  1 )  e.  RR )
7472, 71, 73syl2anc 643 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  1 )  e.  RR )
75 ltaddsub2 9492 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  RR  /\  1  e.  RR  /\  (
( A  x.  B
)  +  1 )  e.  RR )  -> 
( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  <->  1  <  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) ) )
7670, 71, 74, 75syl3anc 1184 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  <->  1  <  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) ) )
77 ltadd1 9484 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  RR  /\  ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( A  +  B )  <  ( A  x.  B )  <->  ( ( A  +  B
)  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
7870, 72, 71, 77syl3anc 1184 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <  ( A  x.  B )  <->  ( ( A  +  B
)  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
7978bicomd 193 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
8079biimpd 199 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8176, 80sylbird 227 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8269, 81sylbird 227 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8382adantr 452 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
1  <  ( (
( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  -> 
( A  +  B
)  <  ( A  x.  B ) ) )
8437, 49, 833syld 53 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
( 1  <  ( A  -  1 )  /\  1  <  ( B  -  1 ) )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8529, 84mpd 15 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204  (class class class)co 6072   CCcc 8977   RRcr 8978   1c1 8980    + caddc 8982    x. cmul 8984    < clt 9109    - cmin 9280   2c2 10038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-2 10047
  Copyright terms: Public domain W3C validator