MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq Structured version   Unicode version

Theorem addpipq 8845
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  +pQ  <. C ,  D >. )  =  <. ( ( A  .N  D
)  +N  ( C  .N  B ) ) ,  ( B  .N  D ) >. )

Proof of Theorem addpipq
StepHypRef Expression
1 opelxpi 4939 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 opelxpi 4939 . . 3  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
3 addpipq2 8844 . . 3  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( <. A ,  B >.  +pQ 
<. C ,  D >. )  =  <. ( ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  +N  (
( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. )
) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
41, 2, 3syl2an 465 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  +pQ  <. C ,  D >. )  =  <. ( ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
)  +N  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
5 op1stg 6388 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
6 op2ndg 6389 . . . . 5  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
75, 6oveqan12d 6129 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( A  .N  D ) )
8 op1stg 6388 . . . . 5  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
9 op2ndg 6389 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
108, 9oveqan12rd 6130 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) )  =  ( C  .N  B ) )
117, 10oveq12d 6128 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( (
( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
)  +N  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) ) )  =  ( ( A  .N  D )  +N  ( C  .N  B ) ) )
129, 6oveqan12d 6129 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( B  .N  D ) )
1311, 12opeq12d 4016 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
)  +N  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >.  =  <. (
( A  .N  D
)  +N  ( C  .N  B ) ) ,  ( B  .N  D ) >. )
144, 13eqtrd 2474 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  +pQ  <. C ,  D >. )  =  <. ( ( A  .N  D
)  +N  ( C  .N  B ) ) ,  ( B  .N  D ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   <.cop 3841    X. cxp 4905   ` cfv 5483  (class class class)co 6110   1stc1st 6376   2ndc2nd 6377   N.cnpi 8750    +N cpli 8751    .N cmi 8752    +pQ cplpq 8754
This theorem is referenced by:  addassnq  8866  distrnq  8869  1lt2nq  8881  ltexnq  8883  prlem934  8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-iota 5447  df-fun 5485  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-plpq 8816
  Copyright terms: Public domain W3C validator