MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqf Unicode version

Theorem addpqf 8584
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpqf  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )

Proof of Theorem addpqf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6165 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( 1st `  x )  e.  N. )
2 xp2nd 6166 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( 2nd `  y )  e.  N. )
3 mulclpi 8533 . . . . . 6  |-  ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  y )  e.  N. )  -> 
( ( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N. )
41, 2, 3syl2an 463 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N. )
5 xp1st 6165 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( 1st `  y )  e.  N. )
6 xp2nd 6166 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( 2nd `  x )  e.  N. )
7 mulclpi 8533 . . . . . 6  |-  ( ( ( 1st `  y
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  -> 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  e. 
N. )
85, 6, 7syl2anr 464 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( 1st `  y
)  .N  ( 2nd `  x ) )  e. 
N. )
9 addclpi 8532 . . . . 5  |-  ( ( ( ( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N.  /\  ( ( 1st `  y )  .N  ( 2nd `  x
) )  e.  N. )  ->  ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) )  e.  N. )
104, 8, 9syl2anc 642 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) )  e.  N. )
11 mulclpi 8533 . . . . 5  |-  ( ( ( 2nd `  x
)  e.  N.  /\  ( 2nd `  y )  e.  N. )  -> 
( ( 2nd `  x
)  .N  ( 2nd `  y ) )  e. 
N. )
126, 2, 11syl2an 463 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( 2nd `  x
)  .N  ( 2nd `  y ) )  e. 
N. )
13 opelxpi 4737 . . . 4  |-  ( ( ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) )  e.  N.  /\  ( ( 2nd `  x
)  .N  ( 2nd `  y ) )  e. 
N. )  ->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  e.  ( N.  X.  N. ) )
1410, 12, 13syl2anc 642 . . 3  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  e.  ( N.  X.  N. ) )
1514rgen2a 2622 . 2  |-  A. x  e.  ( N.  X.  N. ) A. y  e.  ( N.  X.  N. ) <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >.  e.  ( N.  X.  N. )
16 df-plpq 8548 . . 3  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
1716fmpt2 6207 . 2  |-  ( A. x  e.  ( N.  X.  N. ) A. y  e.  ( N.  X.  N. ) <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  e.  ( N.  X.  N. )  <->  +pQ  : ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N. 
X.  N. ) )
1815, 17mpbi 199 1  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    e. wcel 1696   A.wral 2556   <.cop 3656    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   N.cnpi 8482    +N cpli 8483    .N cmi 8484    +pQ cplpq 8486
This theorem is referenced by:  addclnq  8585  addnqf  8588  addcompq  8590  adderpq  8596  distrnq  8601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-omul 6500  df-ni 8512  df-pli 8513  df-mi 8514  df-plpq 8548
  Copyright terms: Public domain W3C validator