MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqnq Unicode version

Theorem addpqnq 8750
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addpqnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )

Proof of Theorem addpqnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plq 8726 . . . . 5  |-  +Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) )
21fveq1i 5671 . . . 4  |-  (  +Q 
`  <. A ,  B >. )  =  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
32a1i 11 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  +Q  `  <. A ,  B >. )  =  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
)
4 opelxpi 4852 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( Q.  X.  Q. ) )
5 fvres 5687 . . . 4  |-  ( <. A ,  B >.  e.  ( Q.  X.  Q. )  ->  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )  =  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. ) )
64, 5syl 16 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `
 <. A ,  B >. )  =  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. ) )
7 df-plpq 8720 . . . . 5  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
8 opex 4370 . . . . 5  |-  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  e.  _V
97, 8fnmpt2i 6361 . . . 4  |-  +pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )
10 elpqn 8737 . . . . 5  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
11 elpqn 8737 . . . . 5  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
12 opelxpi 4852 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
1310, 11, 12syl2an 464 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
14 fvco2 5739 . . . 4  |-  ( ( 
+pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  /\  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  +pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) ) )
159, 13, 14sylancr 645 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) ) )
163, 6, 153eqtrd 2425 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  +Q  `  <. A ,  B >. )  =  ( /Q `  (  +pQ  `  <. A ,  B >. ) ) )
17 df-ov 6025 . 2  |-  ( A  +Q  B )  =  (  +Q  `  <. A ,  B >. )
18 df-ov 6025 . . 3  |-  ( A 
+pQ  B )  =  (  +pQ  `  <. A ,  B >. )
1918fveq2i 5673 . 2  |-  ( /Q
`  ( A  +pQ  B ) )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) )
2016, 17, 193eqtr4g 2446 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   <.cop 3762    X. cxp 4818    |` cres 4822    o. ccom 4824    Fn wfn 5391   ` cfv 5396  (class class class)co 6022   1stc1st 6288   2ndc2nd 6289   N.cnpi 8654    +N cpli 8655    .N cmi 8656    +pQ cplpq 8658   Q.cnq 8662   /Qcerq 8664    +Q cplq 8665
This theorem is referenced by:  addclnq  8757  addcomnq  8763  adderpq  8768  addassnq  8770  distrnq  8773  ltanq  8783  1lt2nq  8785  prlem934  8845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-plpq 8720  df-nq 8724  df-plq 8726
  Copyright terms: Public domain W3C validator