MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrpr Structured version   Unicode version

Theorem addsrpr 8988
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
addsrpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )

Proof of Theorem addsrpr
Dummy variables  x  y  z  w  v  u  t  s  f 
g  h  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4462 . 2  |-  <. ( A  +P.  C ) ,  ( B  +P.  D
) >.  e.  _V
2 opex 4462 . 2  |-  <. (
a  +P.  g ) ,  ( b  +P.  h ) >.  e.  _V
3 opex 4462 . 2  |-  <. (
c  +P.  t ) ,  ( d  +P.  s ) >.  e.  _V
4 enrex 8983 . 2  |-  ~R  e.  _V
5 enrer 8981 . 2  |-  ~R  Er  ( P.  X.  P. )
6 df-enr 8972 . 2  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
7 oveq12 6126 . . . 4  |-  ( ( z  =  a  /\  u  =  d )  ->  ( z  +P.  u
)  =  ( a  +P.  d ) )
8 oveq12 6126 . . . 4  |-  ( ( w  =  b  /\  v  =  c )  ->  ( w  +P.  v
)  =  ( b  +P.  c ) )
97, 8eqeqan12d 2458 . . 3  |-  ( ( ( z  =  a  /\  u  =  d )  /\  ( w  =  b  /\  v  =  c ) )  ->  ( ( z  +P.  u )  =  ( w  +P.  v
)  <->  ( a  +P.  d )  =  ( b  +P.  c ) ) )
109an42s 802 . 2  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ( z  +P.  u )  =  ( w  +P.  v
)  <->  ( a  +P.  d )  =  ( b  +P.  c ) ) )
11 oveq12 6126 . . . 4  |-  ( ( z  =  g  /\  u  =  s )  ->  ( z  +P.  u
)  =  ( g  +P.  s ) )
12 oveq12 6126 . . . 4  |-  ( ( w  =  h  /\  v  =  t )  ->  ( w  +P.  v
)  =  ( h  +P.  t ) )
1311, 12eqeqan12d 2458 . . 3  |-  ( ( ( z  =  g  /\  u  =  s )  /\  ( w  =  h  /\  v  =  t ) )  ->  ( ( z  +P.  u )  =  ( w  +P.  v
)  <->  ( g  +P.  s )  =  ( h  +P.  t ) ) )
1413an42s 802 . 2  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ( z  +P.  u )  =  ( w  +P.  v
)  <->  ( g  +P.  s )  =  ( h  +P.  t ) ) )
15 df-plpr 8970 . 2  |-  +pR  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +P.  u ) ,  ( v  +P.  f ) >. )
) }
16 oveq12 6126 . . . 4  |-  ( ( w  =  a  /\  u  =  g )  ->  ( w  +P.  u
)  =  ( a  +P.  g ) )
17 oveq12 6126 . . . 4  |-  ( ( v  =  b  /\  f  =  h )  ->  ( v  +P.  f
)  =  ( b  +P.  h ) )
18 opeq12 4015 . . . 4  |-  ( ( ( w  +P.  u
)  =  ( a  +P.  g )  /\  ( v  +P.  f
)  =  ( b  +P.  h ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  f )
>.  =  <. ( a  +P.  g ) ,  ( b  +P.  h
) >. )
1916, 17, 18syl2an 465 . . 3  |-  ( ( ( w  =  a  /\  u  =  g )  /\  ( v  =  b  /\  f  =  h ) )  ->  <. ( w  +P.  u
) ,  ( v  +P.  f ) >.  =  <. ( a  +P.  g ) ,  ( b  +P.  h )
>. )
2019an4s 801 . 2  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  <. ( w  +P.  u
) ,  ( v  +P.  f ) >.  =  <. ( a  +P.  g ) ,  ( b  +P.  h )
>. )
21 oveq12 6126 . . . 4  |-  ( ( w  =  c  /\  u  =  t )  ->  ( w  +P.  u
)  =  ( c  +P.  t ) )
22 oveq12 6126 . . . 4  |-  ( ( v  =  d  /\  f  =  s )  ->  ( v  +P.  f
)  =  ( d  +P.  s ) )
23 opeq12 4015 . . . 4  |-  ( ( ( w  +P.  u
)  =  ( c  +P.  t )  /\  ( v  +P.  f
)  =  ( d  +P.  s ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  f )
>.  =  <. ( c  +P.  t ) ,  ( d  +P.  s
) >. )
2421, 22, 23syl2an 465 . . 3  |-  ( ( ( w  =  c  /\  u  =  t )  /\  ( v  =  d  /\  f  =  s ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  f )
>.  =  <. ( c  +P.  t ) ,  ( d  +P.  s
) >. )
2524an4s 801 . 2  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  f )
>.  =  <. ( c  +P.  t ) ,  ( d  +P.  s
) >. )
26 oveq12 6126 . . . 4  |-  ( ( w  =  A  /\  u  =  C )  ->  ( w  +P.  u
)  =  ( A  +P.  C ) )
27 oveq12 6126 . . . 4  |-  ( ( v  =  B  /\  f  =  D )  ->  ( v  +P.  f
)  =  ( B  +P.  D ) )
28 opeq12 4015 . . . 4  |-  ( ( ( w  +P.  u
)  =  ( A  +P.  C )  /\  ( v  +P.  f
)  =  ( B  +P.  D ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  f )
>.  =  <. ( A  +P.  C ) ,  ( B  +P.  D
) >. )
2926, 27, 28syl2an 465 . . 3  |-  ( ( ( w  =  A  /\  u  =  C )  /\  ( v  =  B  /\  f  =  D ) )  ->  <. ( w  +P.  u
) ,  ( v  +P.  f ) >.  =  <. ( A  +P.  C ) ,  ( B  +P.  D ) >.
)
3029an4s 801 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( w  +P.  u
) ,  ( v  +P.  f ) >.  =  <. ( A  +P.  C ) ,  ( B  +P.  D ) >.
)
31 df-plr 8974 . 2  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  ~R  /\  y  =  [ <. c ,  d >. ]  ~R  )  /\  z  =  [
( <. a ,  b
>.  +pR  <. c ,  d
>. ) ]  ~R  )
) }
32 df-nr 8973 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
33 addcmpblnr 8985 . 2  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )
)  /\  ( (
g  e.  P.  /\  h  e.  P. )  /\  ( t  e.  P.  /\  s  e.  P. )
) )  ->  (
( ( a  +P.  d )  =  ( b  +P.  c )  /\  ( g  +P.  s )  =  ( h  +P.  t ) )  ->  <. ( a  +P.  g ) ,  ( b  +P.  h
) >.  ~R  <. ( c  +P.  t ) ,  ( d  +P.  s
) >. ) )
341, 2, 3, 4, 5, 6, 10, 14, 15, 20, 25, 30, 31, 32, 33ovec 7050 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1654    e. wcel 1728   <.cop 3846  (class class class)co 6117   [cec 6939   P.cnp 8772    +P. cpp 8774    +pR cplpr 8777    ~R cer 8779   R.cnr 8780    +R cplr 8784
This theorem is referenced by:  addclsr  8996  addcomsr  9000  addasssr  9001  distrsr  9004  m1p1sr  9005  0idsr  9010  ltasr  9013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-inf2 7632
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-recs 6669  df-rdg 6704  df-1o 6760  df-oadd 6764  df-omul 6765  df-er 6941  df-ec 6943  df-qs 6947  df-ni 8787  df-pli 8788  df-mi 8789  df-lti 8790  df-plpq 8823  df-mpq 8824  df-ltpq 8825  df-enq 8826  df-nq 8827  df-erq 8828  df-plq 8829  df-mq 8830  df-1nq 8831  df-rq 8832  df-ltnq 8833  df-np 8896  df-plp 8898  df-ltp 8900  df-plpr 8970  df-enr 8972  df-nr 8973  df-plr 8974
  Copyright terms: Public domain W3C validator