MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubd Unicode version

Theorem addsubd 9194
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addsubd  |-  ( ph  ->  ( ( A  +  B )  -  C
)  =  ( ( A  -  C )  +  B ) )

Proof of Theorem addsubd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subaddd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 addsub 9078 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( ( A  -  C )  +  B ) )
51, 2, 3, 4syl3anc 1182 1  |-  ( ph  ->  ( ( A  +  B )  -  C
)  =  ( ( A  -  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696  (class class class)co 5874   CCcc 8751    + caddc 8756    - cmin 9053
This theorem is referenced by:  lesub2  9285  modadd1  11017  discr  11254  bcp1n  11344  bcpasc  11349  revccat  11500  crre  11615  isercoll2  12158  binomlem  12303  climcndslem1  12324  pythagtriplem14  12897  vdwlem6  13049  gsumccat  14480  itgcnlem  19160  dvcvx  19383  dvfsumlem1  19389  dvfsumlem2  19390  plymullem1  19612  aaliou3lem2  19739  abelthlem2  19824  tangtx  19889  loglesqr  20114  dcubic1  20157  quart1lem  20167  quartlem1  20169  basellem3  20336  basellem5  20338  chtub  20467  logfaclbnd  20477  bcp1ctr  20534  lgsquad2lem1  20613  selberglem1  20710  selberg3  20724  selbergr  20733  selberg3r  20734  pntlemf  20770  pntlemo  20772  ltesubnnd  23049  ballotlemfp1  23066  subfacp1lem6  23731  brbtwn2  24605  colinearalglem1  24606  colinearalglem2  24607  jm2.24nn  27149  jm2.18  27184  jm2.25  27195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055
  Copyright terms: Public domain W3C validator