MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubeq4 Unicode version

Theorem addsubeq4 9082
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
addsubeq4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )

Proof of Theorem addsubeq4
StepHypRef Expression
1 eqcom 2298 . . 3  |-  ( ( C  -  A )  =  ( B  -  D )  <->  ( B  -  D )  =  ( C  -  A ) )
2 subcl 9067 . . . . . 6  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  -  A
)  e.  CC )
32ancoms 439 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( C  -  A
)  e.  CC )
4 subadd 9070 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  ( C  -  A )  e.  CC )  ->  (
( B  -  D
)  =  ( C  -  A )  <->  ( D  +  ( C  -  A ) )  =  B ) )
543expa 1151 . . . . . 6  |-  ( ( ( B  e.  CC  /\  D  e.  CC )  /\  ( C  -  A )  e.  CC )  ->  ( ( B  -  D )  =  ( C  -  A
)  <->  ( D  +  ( C  -  A
) )  =  B ) )
65ancoms 439 . . . . 5  |-  ( ( ( C  -  A
)  e.  CC  /\  ( B  e.  CC  /\  D  e.  CC ) )  ->  ( ( B  -  D )  =  ( C  -  A )  <->  ( D  +  ( C  -  A ) )  =  B ) )
73, 6sylan 457 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  -  D )  =  ( C  -  A )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
87an4s 799 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  -  D )  =  ( C  -  A )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
91, 8syl5bb 248 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  -  A )  =  ( B  -  D )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
10 addcom 9014 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  =  ( D  +  C ) )
1110adantl 452 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( C  +  D )  =  ( D  +  C ) )
1211oveq1d 5889 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( C  +  D )  -  A )  =  ( ( D  +  C
)  -  A ) )
13 addsubass 9077 . . . . . . . 8  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
( D  +  C
)  -  A )  =  ( D  +  ( C  -  A
) ) )
14133com12 1155 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  A  e.  CC )  ->  (
( D  +  C
)  -  A )  =  ( D  +  ( C  -  A
) ) )
15143expa 1151 . . . . . 6  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  A  e.  CC )  ->  ( ( D  +  C )  -  A )  =  ( D  +  ( C  -  A ) ) )
1615ancoms 439 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( D  +  C )  -  A )  =  ( D  +  ( C  -  A ) ) )
1712, 16eqtrd 2328 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( C  +  D )  -  A )  =  ( D  +  ( C  -  A ) ) )
1817adantlr 695 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  +  D )  -  A
)  =  ( D  +  ( C  -  A ) ) )
1918eqeq1d 2304 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( C  +  D )  -  A )  =  B  <-> 
( D  +  ( C  -  A ) )  =  B ) )
20 addcl 8835 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
21 subadd 9070 . . . . 5  |-  ( ( ( C  +  D
)  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( ( C  +  D )  -  A
)  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
22213expb 1152 . . . 4  |-  ( ( ( C  +  D
)  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
( C  +  D
)  -  A )  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
2322ancoms 439 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  +  D )  e.  CC )  ->  ( ( ( C  +  D )  -  A )  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
2420, 23sylan2 460 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( C  +  D )  -  A )  =  B  <-> 
( A  +  B
)  =  ( C  +  D ) ) )
259, 19, 243bitr2rd 273 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696  (class class class)co 5874   CCcc 8751    + caddc 8756    - cmin 9053
This theorem is referenced by:  subcan  9118  addsubeq4d  9224  dvsqr  20100  addsubeq4OLD  26537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055
  Copyright terms: Public domain W3C validator