HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadd Unicode version

Theorem adjadd 22634
Description: The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadd  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( adjh `  ( S  +op  T ) )  =  ( ( adjh `  S )  +op  ( adjh `  T ) ) )

Proof of Theorem adjadd
StepHypRef Expression
1 dmadjop 22429 . . 3  |-  ( S  e.  dom  adjh  ->  S : ~H --> ~H )
2 dmadjop 22429 . . 3  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
3 hoaddcl 22299 . . 3  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( S  +op  T
) : ~H --> ~H )
41, 2, 3syl2an 465 . 2  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( S  +op  T ) : ~H --> ~H )
5 dmadjrn 22436 . . . 4  |-  ( S  e.  dom  adjh  ->  (
adjh `  S )  e.  dom  adjh )
6 dmadjop 22429 . . . 4  |-  ( (
adjh `  S )  e.  dom  adjh  ->  ( adjh `  S ) : ~H --> ~H )
75, 6syl 17 . . 3  |-  ( S  e.  dom  adjh  ->  (
adjh `  S ) : ~H --> ~H )
8 dmadjrn 22436 . . . 4  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
9 dmadjop 22429 . . . 4  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
108, 9syl 17 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
11 hoaddcl 22299 . . 3  |-  ( ( ( adjh `  S
) : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H )  -> 
( ( adjh `  S
)  +op  ( adjh `  T ) ) : ~H --> ~H )
127, 10, 11syl2an 465 . 2  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( ( adjh `  S )  +op  ( adjh `  T ) ) : ~H --> ~H )
13 adj2 22475 . . . . . . . 8  |-  ( ( S  e.  dom  adjh  /\  x  e.  ~H  /\  y  e.  ~H )  ->  ( ( S `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  S ) `  y
) ) )
14133expb 1157 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( S `  x )  .ih  y )  =  ( x  .ih  ( (
adjh `  S ) `  y ) ) )
1514adantlr 698 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( S `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  S ) `  y
) ) )
16 adj2 22475 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  T ) `  y
) ) )
17163expb 1157 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  .ih  y )  =  ( x  .ih  ( (
adjh `  T ) `  y ) ) )
1817adantll 697 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  T ) `  y
) ) )
1915, 18oveq12d 5810 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S `
 x )  .ih  y )  +  ( ( T `  x
)  .ih  y )
)  =  ( ( x  .ih  ( (
adjh `  S ) `  y ) )  +  ( x  .ih  (
( adjh `  T ) `  y ) ) ) )
20 ffvelrn 5597 . . . . . . . 8  |-  ( ( S : ~H --> ~H  /\  x  e.  ~H )  ->  ( S `  x
)  e.  ~H )
211, 20sylan 459 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  x  e.  ~H )  ->  ( S `  x
)  e.  ~H )
2221ad2ant2r 730 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( S `  x
)  e.  ~H )
23 ffvelrn 5597 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
242, 23sylan 459 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
2524ad2ant2lr 731 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( T `  x
)  e.  ~H )
26 simprr 736 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
y  e.  ~H )
27 ax-his2 21623 . . . . . 6  |-  ( ( ( S `  x
)  e.  ~H  /\  ( T `  x )  e.  ~H  /\  y  e.  ~H )  ->  (
( ( S `  x )  +h  ( T `  x )
)  .ih  y )  =  ( ( ( S `  x ) 
.ih  y )  +  ( ( T `  x )  .ih  y
) ) )
2822, 25, 26, 27syl3anc 1187 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S `
 x )  +h  ( T `  x
) )  .ih  y
)  =  ( ( ( S `  x
)  .ih  y )  +  ( ( T `
 x )  .ih  y ) ) )
29 simprl 735 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  ->  x  e.  ~H )
30 adjcl 22473 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  S
) `  y )  e.  ~H )
3130ad2ant2rl 732 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( adjh `  S
) `  y )  e.  ~H )
32 adjcl 22473 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
3332ad2ant2l 729 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( adjh `  T
) `  y )  e.  ~H )
34 his7 21630 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( ( adjh `  S
) `  y )  e.  ~H  /\  ( (
adjh `  T ) `  y )  e.  ~H )  ->  ( x  .ih  ( ( ( adjh `  S ) `  y
)  +h  ( (
adjh `  T ) `  y ) ) )  =  ( ( x 
.ih  ( ( adjh `  S ) `  y
) )  +  ( x  .ih  ( (
adjh `  T ) `  y ) ) ) )
3529, 31, 33, 34syl3anc 1187 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )  =  ( ( x  .ih  (
( adjh `  S ) `  y ) )  +  ( x  .ih  (
( adjh `  T ) `  y ) ) ) )
3619, 28, 353eqtr4rd 2301 . . . 4  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )  =  ( ( ( S `  x )  +h  ( T `  x )
)  .ih  y )
)
377, 10anim12i 551 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( ( adjh `  S ) : ~H --> ~H  /\  ( adjh `  T
) : ~H --> ~H )
)
38 hosval 22281 . . . . . . . 8  |-  ( ( ( adjh `  S
) : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H  /\  y  e.  ~H )  ->  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y )  =  ( ( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )
39383expa 1156 . . . . . . 7  |-  ( ( ( ( adjh `  S
) : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H )  /\  y  e.  ~H )  ->  ( ( ( adjh `  S )  +op  ( adjh `  T ) ) `
 y )  =  ( ( ( adjh `  S ) `  y
)  +h  ( (
adjh `  T ) `  y ) ) )
4037, 39sylan 459 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  y  e. 
~H )  ->  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y )  =  ( ( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )
4140adantrl 699 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( adjh `  S )  +op  ( adjh `  T ) ) `
 y )  =  ( ( ( adjh `  S ) `  y
)  +h  ( (
adjh `  T ) `  y ) ) )
4241oveq2d 5808 . . . 4  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y ) )  =  ( x  .ih  (
( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) ) )
431, 2anim12i 551 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( S : ~H
--> ~H  /\  T : ~H
--> ~H ) )
44 hosval 22281 . . . . . . . 8  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( S  +op  T ) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
45443expa 1156 . . . . . . 7  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  (
( S  +op  T
) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
4643, 45sylan 459 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  x  e. 
~H )  ->  (
( S  +op  T
) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
4746adantrr 700 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( S  +op  T ) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
4847oveq1d 5807 . . . 4  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S 
+op  T ) `  x )  .ih  y
)  =  ( ( ( S `  x
)  +h  ( T `
 x ) ) 
.ih  y ) )
4936, 42, 483eqtr4rd 2301 . . 3  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S 
+op  T ) `  x )  .ih  y
)  =  ( x 
.ih  ( ( (
adjh `  S )  +op  ( adjh `  T
) ) `  y
) ) )
5049ralrimivva 2610 . 2  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  A. x  e.  ~H  A. y  e.  ~H  (
( ( S  +op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y ) ) )
51 adjeq 22476 . 2  |-  ( ( ( S  +op  T
) : ~H --> ~H  /\  ( ( adjh `  S
)  +op  ( adjh `  T ) ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( ( S  +op  T ) `
 x )  .ih  y )  =  ( x  .ih  ( ( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y ) ) )  ->  ( adjh `  ( S  +op  T ) )  =  ( ( adjh `  S )  +op  ( adjh `  T ) ) )
524, 12, 50, 51syl3anc 1187 1  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( adjh `  ( S  +op  T ) )  =  ( ( adjh `  S )  +op  ( adjh `  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   dom cdm 4661   -->wf 4669   ` cfv 4673  (class class class)co 5792    + caddc 8708   ~Hchil 21460    +h cva 21461    .ih csp 21463    +op chos 21479   adjhcado 21496
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-hilex 21540  ax-hfvadd 21541  ax-hvcom 21542  ax-hvass 21543  ax-hv0cl 21544  ax-hvaddid 21545  ax-hfvmul 21546  ax-hvmulid 21547  ax-hvdistr2 21550  ax-hvmul0 21551  ax-hfi 21619  ax-his1 21622  ax-his2 21623  ax-his3 21624  ax-his4 21625
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11550  df-re 11551  df-im 11552  df-hvsub 21512  df-hosum 22271  df-adjh 22390
  Copyright terms: Public domain W3C validator