HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadd Unicode version

Theorem adjadd 22669
Description: The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadd  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( adjh `  ( S  +op  T ) )  =  ( ( adjh `  S )  +op  ( adjh `  T ) ) )

Proof of Theorem adjadd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 22464 . . 3  |-  ( S  e.  dom  adjh  ->  S : ~H --> ~H )
2 dmadjop 22464 . . 3  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
3 hoaddcl 22334 . . 3  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( S  +op  T
) : ~H --> ~H )
41, 2, 3syl2an 463 . 2  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( S  +op  T ) : ~H --> ~H )
5 dmadjrn 22471 . . . 4  |-  ( S  e.  dom  adjh  ->  (
adjh `  S )  e.  dom  adjh )
6 dmadjop 22464 . . . 4  |-  ( (
adjh `  S )  e.  dom  adjh  ->  ( adjh `  S ) : ~H --> ~H )
75, 6syl 15 . . 3  |-  ( S  e.  dom  adjh  ->  (
adjh `  S ) : ~H --> ~H )
8 dmadjrn 22471 . . . 4  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
9 dmadjop 22464 . . . 4  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
108, 9syl 15 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
11 hoaddcl 22334 . . 3  |-  ( ( ( adjh `  S
) : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H )  -> 
( ( adjh `  S
)  +op  ( adjh `  T ) ) : ~H --> ~H )
127, 10, 11syl2an 463 . 2  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( ( adjh `  S )  +op  ( adjh `  T ) ) : ~H --> ~H )
13 adj2 22510 . . . . . . . 8  |-  ( ( S  e.  dom  adjh  /\  x  e.  ~H  /\  y  e.  ~H )  ->  ( ( S `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  S ) `  y
) ) )
14133expb 1152 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( S `  x )  .ih  y )  =  ( x  .ih  ( (
adjh `  S ) `  y ) ) )
1514adantlr 695 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( S `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  S ) `  y
) ) )
16 adj2 22510 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  T ) `  y
) ) )
17163expb 1152 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  .ih  y )  =  ( x  .ih  ( (
adjh `  T ) `  y ) ) )
1817adantll 694 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  T ) `  y
) ) )
1915, 18oveq12d 5838 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S `
 x )  .ih  y )  +  ( ( T `  x
)  .ih  y )
)  =  ( ( x  .ih  ( (
adjh `  S ) `  y ) )  +  ( x  .ih  (
( adjh `  T ) `  y ) ) ) )
20 ffvelrn 5625 . . . . . . . 8  |-  ( ( S : ~H --> ~H  /\  x  e.  ~H )  ->  ( S `  x
)  e.  ~H )
211, 20sylan 457 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  x  e.  ~H )  ->  ( S `  x
)  e.  ~H )
2221ad2ant2r 727 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( S `  x
)  e.  ~H )
23 ffvelrn 5625 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
242, 23sylan 457 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
2524ad2ant2lr 728 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( T `  x
)  e.  ~H )
26 simprr 733 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
y  e.  ~H )
27 ax-his2 21658 . . . . . 6  |-  ( ( ( S `  x
)  e.  ~H  /\  ( T `  x )  e.  ~H  /\  y  e.  ~H )  ->  (
( ( S `  x )  +h  ( T `  x )
)  .ih  y )  =  ( ( ( S `  x ) 
.ih  y )  +  ( ( T `  x )  .ih  y
) ) )
2822, 25, 26, 27syl3anc 1182 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S `
 x )  +h  ( T `  x
) )  .ih  y
)  =  ( ( ( S `  x
)  .ih  y )  +  ( ( T `
 x )  .ih  y ) ) )
29 simprl 732 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  ->  x  e.  ~H )
30 adjcl 22508 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  S
) `  y )  e.  ~H )
3130ad2ant2rl 729 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( adjh `  S
) `  y )  e.  ~H )
32 adjcl 22508 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
3332ad2ant2l 726 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( adjh `  T
) `  y )  e.  ~H )
34 his7 21665 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( ( adjh `  S
) `  y )  e.  ~H  /\  ( (
adjh `  T ) `  y )  e.  ~H )  ->  ( x  .ih  ( ( ( adjh `  S ) `  y
)  +h  ( (
adjh `  T ) `  y ) ) )  =  ( ( x 
.ih  ( ( adjh `  S ) `  y
) )  +  ( x  .ih  ( (
adjh `  T ) `  y ) ) ) )
3529, 31, 33, 34syl3anc 1182 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )  =  ( ( x  .ih  (
( adjh `  S ) `  y ) )  +  ( x  .ih  (
( adjh `  T ) `  y ) ) ) )
3619, 28, 353eqtr4rd 2327 . . . 4  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )  =  ( ( ( S `  x )  +h  ( T `  x )
)  .ih  y )
)
377, 10anim12i 549 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( ( adjh `  S ) : ~H --> ~H  /\  ( adjh `  T
) : ~H --> ~H )
)
38 hosval 22316 . . . . . . . 8  |-  ( ( ( adjh `  S
) : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H  /\  y  e.  ~H )  ->  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y )  =  ( ( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )
39383expa 1151 . . . . . . 7  |-  ( ( ( ( adjh `  S
) : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H )  /\  y  e.  ~H )  ->  ( ( ( adjh `  S )  +op  ( adjh `  T ) ) `
 y )  =  ( ( ( adjh `  S ) `  y
)  +h  ( (
adjh `  T ) `  y ) ) )
4037, 39sylan 457 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  y  e. 
~H )  ->  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y )  =  ( ( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) )
4140adantrl 696 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( adjh `  S )  +op  ( adjh `  T ) ) `
 y )  =  ( ( ( adjh `  S ) `  y
)  +h  ( (
adjh `  T ) `  y ) ) )
4241oveq2d 5836 . . . 4  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y ) )  =  ( x  .ih  (
( ( adjh `  S
) `  y )  +h  ( ( adjh `  T
) `  y )
) ) )
431, 2anim12i 549 . . . . . . 7  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( S : ~H
--> ~H  /\  T : ~H
--> ~H ) )
44 hosval 22316 . . . . . . . 8  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( S  +op  T ) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
45443expa 1151 . . . . . . 7  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  (
( S  +op  T
) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
4643, 45sylan 457 . . . . . 6  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  x  e. 
~H )  ->  (
( S  +op  T
) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
4746adantrr 697 . . . . 5  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( S  +op  T ) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
4847oveq1d 5835 . . . 4  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S 
+op  T ) `  x )  .ih  y
)  =  ( ( ( S `  x
)  +h  ( T `
 x ) ) 
.ih  y ) )
4936, 42, 483eqtr4rd 2327 . . 3  |-  ( ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  /\  ( x  e.  ~H  /\  y  e.  ~H ) )  -> 
( ( ( S 
+op  T ) `  x )  .ih  y
)  =  ( x 
.ih  ( ( (
adjh `  S )  +op  ( adjh `  T
) ) `  y
) ) )
5049ralrimivva 2636 . 2  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  A. x  e.  ~H  A. y  e.  ~H  (
( ( S  +op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y ) ) )
51 adjeq 22511 . 2  |-  ( ( ( S  +op  T
) : ~H --> ~H  /\  ( ( adjh `  S
)  +op  ( adjh `  T ) ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( ( S  +op  T ) `
 x )  .ih  y )  =  ( x  .ih  ( ( ( adjh `  S
)  +op  ( adjh `  T ) ) `  y ) ) )  ->  ( adjh `  ( S  +op  T ) )  =  ( ( adjh `  S )  +op  ( adjh `  T ) ) )
524, 12, 50, 51syl3anc 1182 1  |-  ( ( S  e.  dom  adjh  /\  T  e.  dom  adjh )  ->  ( adjh `  ( S  +op  T ) )  =  ( ( adjh `  S )  +op  ( adjh `  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544    dom cdm 4688   -->wf 5217   ` cfv 5221  (class class class)co 5820    + caddc 8736   ~Hchil 21495    +h cva 21496    .ih csp 21498    +op chos 21514   adjhcado 21531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-hilex 21575  ax-hfvadd 21576  ax-hvcom 21577  ax-hvass 21578  ax-hv0cl 21579  ax-hvaddid 21580  ax-hfvmul 21581  ax-hvmulid 21582  ax-hvdistr2 21585  ax-hvmul0 21586  ax-hfi 21654  ax-his1 21657  ax-his2 21658  ax-his3 21659  ax-his4 21660
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-2 9800  df-cj 11580  df-re 11581  df-im 11582  df-hvsub 21547  df-hosum 22306  df-adjh 22425
  Copyright terms: Public domain W3C validator