HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Unicode version

Theorem adjlnop 23546
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  LinOp )

Proof of Theorem adjlnop
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjrn 23355 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
2 dmadjop 23348 . . 3  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
31, 2syl 16 . 2  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
4 simp2 958 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  ->  w  e.  ~H )
5 adjcl 23392 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
6 hvmulcl 22473 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( adjh `  T
) `  y )  e.  ~H )  ->  (
x  .h  ( (
adjh `  T ) `  y ) )  e. 
~H )
75, 6sylan2 461 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( T  e.  dom  adjh  /\  y  e.  ~H ) )  ->  (
x  .h  ( (
adjh `  T ) `  y ) )  e. 
~H )
87an12s 777 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( ( adjh `  T
) `  y )
)  e.  ~H )
98adantrr 698 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H )
1093adant2 976 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H )
11 adjcl 23392 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  z  e.  ~H )  ->  ( ( adjh `  T
) `  z )  e.  ~H )
1211adantrl 697 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  z )  e.  ~H )
13123adant2 976 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  z )  e.  ~H )
14 his7 22549 . . . . . . . . . . 11  |-  ( ( w  e.  ~H  /\  ( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H  /\  ( ( adjh `  T ) `  z )  e.  ~H )  ->  ( w  .ih  ( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) ) )  =  ( ( w 
.ih  ( x  .h  ( ( adjh `  T
) `  y )
) )  +  ( w  .ih  ( (
adjh `  T ) `  z ) ) ) )
154, 10, 13, 14syl3anc 1184 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) )  =  ( ( w  .ih  (
x  .h  ( (
adjh `  T ) `  y ) ) )  +  ( w  .ih  ( ( adjh `  T
) `  z )
) ) )
16 adj2 23394 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  w )  .ih  y
)  =  ( w 
.ih  ( ( adjh `  T ) `  y
) ) )
17163adant3l 1180 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  y )  =  ( w  .ih  ( (
adjh `  T ) `  y ) ) )
1817oveq2d 6060 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
* `  x )  x.  ( ( T `  w )  .ih  y
) )  =  ( ( * `  x
)  x.  ( w 
.ih  ( ( adjh `  T ) `  y
) ) ) )
19 simp3l 985 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  x  e.  CC )
20 dmadjop 23348 . . . . . . . . . . . . . . . 16  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
2120ffvelrnda 5833 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H )  ->  ( T `  w
)  e.  ~H )
22213adant3 977 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( T `  w )  e.  ~H )
23 simp3r 986 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  y  e.  ~H )
24 his5 22545 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( T `  w )  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  w
)  .ih  ( x  .h  y ) )  =  ( ( * `  x )  x.  (
( T `  w
)  .ih  y )
) )
2519, 22, 23, 24syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  ( x  .h  y
) )  =  ( ( * `  x
)  x.  ( ( T `  w ) 
.ih  y ) ) )
26 simp2 958 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  w  e.  ~H )
275adantrl 697 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( adjh `  T ) `  y )  e.  ~H )
28273adant2 976 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( adjh `  T ) `  y )  e.  ~H )
29 his5 22545 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  ~H  /\  (
( adjh `  T ) `  y )  e.  ~H )  ->  ( w  .ih  ( x  .h  (
( adjh `  T ) `  y ) ) )  =  ( ( * `
 x )  x.  ( w  .ih  (
( adjh `  T ) `  y ) ) ) )
3019, 26, 28, 29syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( w  .ih  ( x  .h  (
( adjh `  T ) `  y ) ) )  =  ( ( * `
 x )  x.  ( w  .ih  (
( adjh `  T ) `  y ) ) ) )
3118, 25, 303eqtr4d 2450 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  ( x  .h  y
) )  =  ( w  .ih  ( x  .h  ( ( adjh `  T ) `  y
) ) ) )
32313adant3r 1181 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
x  .h  y ) )  =  ( w 
.ih  ( x  .h  ( ( adjh `  T
) `  y )
) ) )
33 adj2 23394 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  w )  .ih  z
)  =  ( w 
.ih  ( ( adjh `  T ) `  z
) ) )
34333adant3l 1180 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  z
)  =  ( w 
.ih  ( ( adjh `  T ) `  z
) ) )
3532, 34oveq12d 6062 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( ( T `
 w )  .ih  ( x  .h  y
) )  +  ( ( T `  w
)  .ih  z )
)  =  ( ( w  .ih  ( x  .h  ( ( adjh `  T ) `  y
) ) )  +  ( w  .ih  (
( adjh `  T ) `  z ) ) ) )
36213adant3 977 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( T `  w
)  e.  ~H )
37 hvmulcl 22473 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
3837adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( x  .h  y )  e.  ~H )
39383ad2ant3 980 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  y
)  e.  ~H )
40 simp3r 986 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
z  e.  ~H )
41 his7 22549 . . . . . . . . . . . 12  |-  ( ( ( T `  w
)  e.  ~H  /\  ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( ( ( T `  w
)  .ih  ( x  .h  y ) )  +  ( ( T `  w )  .ih  z
) ) )
4236, 39, 40, 41syl3anc 1184 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( ( ( T `  w
)  .ih  ( x  .h  y ) )  +  ( ( T `  w )  .ih  z
) ) )
43 hvaddcl 22472 . . . . . . . . . . . . 13  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
4437, 43sylan 458 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
45 adj2 23394 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4644, 45syl3an3 1219 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4742, 46eqtr3d 2442 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( ( T `
 w )  .ih  ( x  .h  y
) )  +  ( ( T `  w
)  .ih  z )
)  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4815, 35, 473eqtr2rd 2447 . . . . . . . . 9  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( w  .ih  (
( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
49483com23 1159 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  (
w  .ih  ( ( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
50493expa 1153 . . . . . . 7  |-  ( ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  /\  w  e.  ~H )  ->  ( w  .ih  (
( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
5150ralrimiva 2753 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  ->  A. w  e.  ~H  ( w  .ih  ( (
adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
52 adjcl 23392 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H )
5344, 52sylan2 461 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H )
54 hvaddcl 22472 . . . . . . . . 9  |-  ( ( ( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H  /\  ( ( adjh `  T ) `  z )  e.  ~H )  ->  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) )  e. 
~H )
558, 11, 54syl2an 464 . . . . . . . 8  |-  ( ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  ( T  e.  dom  adjh  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) )  e. 
~H )
5655anandis 804 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) )  e. 
~H )
57 hial2eq2 22566 . . . . . . 7  |-  ( ( ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H  /\  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
)  e.  ~H )  ->  ( A. w  e. 
~H  ( w  .ih  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) ) )  =  ( w 
.ih  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )  <-> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
5853, 56, 57syl2anc 643 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( A. w  e. 
~H  ( w  .ih  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) ) )  =  ( w 
.ih  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )  <-> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
5951, 58mpbid 202 . . . . 5  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )
6059exp32 589 . . . 4  |-  ( T  e.  dom  adjh  ->  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( z  e.  ~H  ->  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) ) )
6160ralrimdv 2759 . . 3  |-  ( T  e.  dom  adjh  ->  ( ( x  e.  CC  /\  y  e.  ~H )  ->  A. z  e.  ~H  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
6261ralrimivv 2761 . 2  |-  ( T  e.  dom  adjh  ->  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( (
adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) )
63 ellnop 23318 . 2  |-  ( (
adjh `  T )  e.  LinOp 
<->  ( ( adjh `  T
) : ~H --> ~H  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( (
adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
643, 62, 63sylanbrc 646 1  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  LinOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2670   dom cdm 4841   -->wf 5413   ` cfv 5417  (class class class)co 6044   CCcc 8948    + caddc 8953    x. cmul 8955   *ccj 11860   ~Hchil 22379    +h cva 22380    .h csm 22381    .ih csp 22382   LinOpclo 22407   adjhcado 22415
This theorem is referenced by:  adjsslnop  23547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-hilex 22459  ax-hfvadd 22460  ax-hvcom 22461  ax-hvass 22462  ax-hv0cl 22463  ax-hvaddid 22464  ax-hfvmul 22465  ax-hvmulid 22466  ax-hvdistr2 22469  ax-hvmul0 22470  ax-hfi 22538  ax-his1 22541  ax-his2 22542  ax-his3 22543  ax-his4 22544
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-2 10018  df-cj 11863  df-re 11864  df-im 11865  df-hvsub 22431  df-lnop 23301  df-adjh 23309
  Copyright terms: Public domain W3C validator