HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Unicode version

Theorem adjlnop 22627
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  LinOp )

Proof of Theorem adjlnop
StepHypRef Expression
1 dmadjrn 22436 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
2 dmadjop 22429 . . 3  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
31, 2syl 17 . 2  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
4 simp2 961 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  ->  w  e.  ~H )
5 adjcl 22473 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
6 hvmulcl 21554 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( adjh `  T
) `  y )  e.  ~H )  ->  (
x  .h  ( (
adjh `  T ) `  y ) )  e. 
~H )
75, 6sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( T  e.  dom  adjh  /\  y  e.  ~H ) )  ->  (
x  .h  ( (
adjh `  T ) `  y ) )  e. 
~H )
87an12s 779 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( ( adjh `  T
) `  y )
)  e.  ~H )
98adantrr 700 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H )
1093adant2 979 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H )
11 adjcl 22473 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  z  e.  ~H )  ->  ( ( adjh `  T
) `  z )  e.  ~H )
1211adantrl 699 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  z )  e.  ~H )
13123adant2 979 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  z )  e.  ~H )
14 his7 21630 . . . . . . . . . . 11  |-  ( ( w  e.  ~H  /\  ( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H  /\  ( ( adjh `  T ) `  z )  e.  ~H )  ->  ( w  .ih  ( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) ) )  =  ( ( w 
.ih  ( x  .h  ( ( adjh `  T
) `  y )
) )  +  ( w  .ih  ( (
adjh `  T ) `  z ) ) ) )
154, 10, 13, 14syl3anc 1187 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) )  =  ( ( w  .ih  (
x  .h  ( (
adjh `  T ) `  y ) ) )  +  ( w  .ih  ( ( adjh `  T
) `  z )
) ) )
16 adj2 22475 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  w )  .ih  y
)  =  ( w 
.ih  ( ( adjh `  T ) `  y
) ) )
17163adant3l 1183 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  y )  =  ( w  .ih  ( (
adjh `  T ) `  y ) ) )
1817oveq2d 5808 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
* `  x )  x.  ( ( T `  w )  .ih  y
) )  =  ( ( * `  x
)  x.  ( w 
.ih  ( ( adjh `  T ) `  y
) ) ) )
19 simp3l 988 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  x  e.  CC )
20 dmadjop 22429 . . . . . . . . . . . . . . . 16  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
21 ffvelrn 5597 . . . . . . . . . . . . . . . 16  |-  ( ( T : ~H --> ~H  /\  w  e.  ~H )  ->  ( T `  w
)  e.  ~H )
2220, 21sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H )  ->  ( T `  w
)  e.  ~H )
23223adant3 980 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( T `  w )  e.  ~H )
24 simp3r 989 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  y  e.  ~H )
25 his5 21626 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( T `  w )  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  w
)  .ih  ( x  .h  y ) )  =  ( ( * `  x )  x.  (
( T `  w
)  .ih  y )
) )
2619, 23, 24, 25syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  ( x  .h  y
) )  =  ( ( * `  x
)  x.  ( ( T `  w ) 
.ih  y ) ) )
27 simp2 961 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  w  e.  ~H )
285adantrl 699 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( adjh `  T ) `  y )  e.  ~H )
29283adant2 979 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( adjh `  T ) `  y )  e.  ~H )
30 his5 21626 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  ~H  /\  (
( adjh `  T ) `  y )  e.  ~H )  ->  ( w  .ih  ( x  .h  (
( adjh `  T ) `  y ) ) )  =  ( ( * `
 x )  x.  ( w  .ih  (
( adjh `  T ) `  y ) ) ) )
3119, 27, 29, 30syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( w  .ih  ( x  .h  (
( adjh `  T ) `  y ) ) )  =  ( ( * `
 x )  x.  ( w  .ih  (
( adjh `  T ) `  y ) ) ) )
3218, 26, 313eqtr4d 2300 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  ( x  .h  y
) )  =  ( w  .ih  ( x  .h  ( ( adjh `  T ) `  y
) ) ) )
33323adant3r 1184 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
x  .h  y ) )  =  ( w 
.ih  ( x  .h  ( ( adjh `  T
) `  y )
) ) )
34 adj2 22475 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  w )  .ih  z
)  =  ( w 
.ih  ( ( adjh `  T ) `  z
) ) )
35343adant3l 1183 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  z
)  =  ( w 
.ih  ( ( adjh `  T ) `  z
) ) )
3633, 35oveq12d 5810 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( ( T `
 w )  .ih  ( x  .h  y
) )  +  ( ( T `  w
)  .ih  z )
)  =  ( ( w  .ih  ( x  .h  ( ( adjh `  T ) `  y
) ) )  +  ( w  .ih  (
( adjh `  T ) `  z ) ) ) )
37223adant3 980 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( T `  w
)  e.  ~H )
38 hvmulcl 21554 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
3938adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( x  .h  y )  e.  ~H )
40393ad2ant3 983 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  y
)  e.  ~H )
41 simp3r 989 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
z  e.  ~H )
42 his7 21630 . . . . . . . . . . . 12  |-  ( ( ( T `  w
)  e.  ~H  /\  ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( ( ( T `  w
)  .ih  ( x  .h  y ) )  +  ( ( T `  w )  .ih  z
) ) )
4337, 40, 41, 42syl3anc 1187 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( ( ( T `  w
)  .ih  ( x  .h  y ) )  +  ( ( T `  w )  .ih  z
) ) )
44 hvaddcl 21553 . . . . . . . . . . . . 13  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
4538, 44sylan 459 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
46 adj2 22475 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4745, 46syl3an3 1222 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4843, 47eqtr3d 2292 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( ( T `
 w )  .ih  ( x  .h  y
) )  +  ( ( T `  w
)  .ih  z )
)  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4915, 36, 483eqtr2rd 2297 . . . . . . . . 9  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( w  .ih  (
( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
50493com23 1162 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  (
w  .ih  ( ( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
51503expa 1156 . . . . . . 7  |-  ( ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  /\  w  e.  ~H )  ->  ( w  .ih  (
( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
5251ralrimiva 2601 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  ->  A. w  e.  ~H  ( w  .ih  ( (
adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
53 adjcl 22473 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H )
5445, 53sylan2 462 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H )
55 hvaddcl 21553 . . . . . . . . 9  |-  ( ( ( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H  /\  ( ( adjh `  T ) `  z )  e.  ~H )  ->  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) )  e. 
~H )
568, 11, 55syl2an 465 . . . . . . . 8  |-  ( ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  ( T  e.  dom  adjh  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) )  e. 
~H )
5756anandis 806 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) )  e. 
~H )
58 hial2eq2 21647 . . . . . . 7  |-  ( ( ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H  /\  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
)  e.  ~H )  ->  ( A. w  e. 
~H  ( w  .ih  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) ) )  =  ( w 
.ih  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )  <-> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
5954, 57, 58syl2anc 645 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( A. w  e. 
~H  ( w  .ih  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) ) )  =  ( w 
.ih  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )  <-> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
6052, 59mpbid 203 . . . . 5  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )
6160exp32 591 . . . 4  |-  ( T  e.  dom  adjh  ->  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( z  e.  ~H  ->  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) ) )
6261ralrimdv 2607 . . 3  |-  ( T  e.  dom  adjh  ->  ( ( x  e.  CC  /\  y  e.  ~H )  ->  A. z  e.  ~H  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
6362ralrimivv 2609 . 2  |-  ( T  e.  dom  adjh  ->  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( (
adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) )
64 ellnop 22399 . 2  |-  ( (
adjh `  T )  e.  LinOp 
<->  ( ( adjh `  T
) : ~H --> ~H  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( (
adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
653, 63, 64sylanbrc 648 1  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  LinOp )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2518   dom cdm 4661   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703    + caddc 8708    x. cmul 8710   *ccj 11547   ~Hchil 21460    +h cva 21461    .h csm 21462    .ih csp 21463   LinOpclo 21488   adjhcado 21496
This theorem is referenced by:  adjsslnop  22628
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-hilex 21540  ax-hfvadd 21541  ax-hvcom 21542  ax-hvass 21543  ax-hv0cl 21544  ax-hvaddid 21545  ax-hfvmul 21546  ax-hvmulid 21547  ax-hvdistr2 21550  ax-hvmul0 21551  ax-hfi 21619  ax-his1 21622  ax-his2 21623  ax-his3 21624  ax-his4 21625
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11550  df-re 11551  df-im 11552  df-hvsub 21512  df-lnop 22382  df-adjh 22390
  Copyright terms: Public domain W3C validator