HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Unicode version

Theorem adjmul 22632
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmul  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( adjh `  ( A  .op  T ) )  =  ( ( * `
 A )  .op  ( adjh `  T )
) )

Proof of Theorem adjmul
StepHypRef Expression
1 dmadjop 22428 . . 3  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
2 homulcl 22299 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
31, 2sylan2 462 . 2  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( A  .op  T
) : ~H --> ~H )
4 cjcl 11555 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
5 dmadjrn 22435 . . . 4  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
6 dmadjop 22428 . . . 4  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
75, 6syl 17 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
8 homulcl 22299 . . 3  |-  ( ( ( * `  A
)  e.  CC  /\  ( adjh `  T ) : ~H --> ~H )  -> 
( ( * `  A )  .op  ( adjh `  T ) ) : ~H --> ~H )
94, 7, 8syl2an 465 . 2  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( ( * `  A )  .op  ( adjh `  T ) ) : ~H --> ~H )
10 adj2 22474 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  T ) `  y
) ) )
11103expb 1157 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  .ih  y )  =  ( x  .ih  ( (
adjh `  T ) `  y ) ) )
1211adantll 697 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( ( adjh `  T
) `  y )
) )
1312oveq2d 5808 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  ( A  x.  ( ( T `  x )  .ih  y ) )  =  ( A  x.  (
x  .ih  ( ( adjh `  T ) `  y ) ) ) )
14 ffvelrn 5597 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
151, 14sylan 459 . . . . . . . . 9  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
16 ax-his3 21623 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( T `  x )  e.  ~H  /\  y  e.  ~H )  ->  (
( A  .h  ( T `  x )
)  .ih  y )  =  ( A  x.  ( ( T `  x )  .ih  y
) ) )
1715, 16syl3an2 1221 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( T  e.  dom  adjh  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( A  .h  ( T `  x ) )  .ih  y )  =  ( A  x.  ( ( T `  x ) 
.ih  y ) ) )
18173exp 1155 . . . . . . 7  |-  ( A  e.  CC  ->  (
( T  e.  dom  adjh  /\  x  e.  ~H )  ->  ( y  e. 
~H  ->  ( ( A  .h  ( T `  x ) )  .ih  y )  =  ( A  x.  ( ( T `  x ) 
.ih  y ) ) ) ) )
1918exp3a 427 . . . . . 6  |-  ( A  e.  CC  ->  ( T  e.  dom  adjh  ->  ( x  e.  ~H  ->  ( y  e.  ~H  ->  ( ( A  .h  ( T `  x )
)  .ih  y )  =  ( A  x.  ( ( T `  x )  .ih  y
) ) ) ) ) )
2019imp43 581 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( A  .h  ( T `  x )
)  .ih  y )  =  ( A  x.  ( ( T `  x )  .ih  y
) ) )
21 simpll 733 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  A  e.  CC )
22 simprl 735 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  x  e.  ~H )
23 adjcl 22472 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
2423ad2ant2l 729 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( adjh `  T ) `  y )  e.  ~H )
25 his52 21626 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  ~H  /\  (
( adjh `  T ) `  y )  e.  ~H )  ->  ( x  .ih  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )  =  ( A  x.  ( x  .ih  ( (
adjh `  T ) `  y ) ) ) )
2621, 22, 24, 25syl3anc 1187 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
x  .ih  ( (
* `  A )  .h  ( ( adjh `  T
) `  y )
) )  =  ( A  x.  ( x 
.ih  ( ( adjh `  T ) `  y
) ) ) )
2713, 20, 263eqtr4d 2300 . . . 4  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( A  .h  ( T `  x )
)  .ih  y )  =  ( x  .ih  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) ) )
28 homval 22281 . . . . . . . 8  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  T ) `  x )  =  ( A  .h  ( T `  x ) ) )
291, 28syl3an2 1221 . . . . . . 7  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh  /\  x  e.  ~H )  ->  (
( A  .op  T
) `  x )  =  ( A  .h  ( T `  x ) ) )
30293expa 1156 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
3130adantrr 700 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( A  .op  T
) `  x )  =  ( A  .h  ( T `  x ) ) )
3231oveq1d 5807 . . . 4  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( ( A  .h  ( T `  x ) )  .ih  y ) )
33 id 21 . . . . . . . 8  |-  ( y  e.  ~H  ->  y  e.  ~H )
34 homval 22281 . . . . . . . 8  |-  ( ( ( * `  A
)  e.  CC  /\  ( adjh `  T ) : ~H --> ~H  /\  y  e.  ~H )  ->  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y )  =  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )
354, 7, 33, 34syl3an 1229 . . . . . . 7  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh  /\  y  e.  ~H )  ->  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y )  =  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )
36353expa 1156 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  y  e.  ~H )  ->  ( ( ( * `  A ) 
.op  ( adjh `  T
) ) `  y
)  =  ( ( * `  A )  .h  ( ( adjh `  T ) `  y
) ) )
3736adantrl 699 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y )  =  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )
3837oveq2d 5808 . . . 4  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
x  .ih  ( (
( * `  A
)  .op  ( adjh `  T ) ) `  y ) )  =  ( x  .ih  (
( * `  A
)  .h  ( (
adjh `  T ) `  y ) ) ) )
3927, 32, 383eqtr4d 2300 . . 3  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y ) ) )
4039ralrimivva 2610 . 2  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  A. x  e.  ~H  A. y  e.  ~H  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y ) ) )
41 adjeq 22475 . 2  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( ( * `  A )  .op  ( adjh `  T ) ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y ) ) )  ->  ( adjh `  ( A  .op  T
) )  =  ( ( * `  A
)  .op  ( adjh `  T ) ) )
423, 9, 40, 41syl3anc 1187 1  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( adjh `  ( A  .op  T ) )  =  ( ( * `
 A )  .op  ( adjh `  T )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   dom cdm 4661   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703    x. cmul 8710   *ccj 11546   ~Hchil 21459    .h csm 21461    .ih csp 21462    .op chot 21479   adjhcado 21495
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-hilex 21539  ax-hfvadd 21540  ax-hvcom 21541  ax-hvass 21542  ax-hv0cl 21543  ax-hvaddid 21544  ax-hfvmul 21545  ax-hvmulid 21546  ax-hvdistr2 21549  ax-hvmul0 21550  ax-hfi 21618  ax-his1 21621  ax-his2 21622  ax-his3 21623  ax-his4 21624
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11549  df-re 11550  df-im 11551  df-hvsub 21511  df-homul 22271  df-adjh 22389
  Copyright terms: Public domain W3C validator