MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph0 Unicode version

Theorem aleph0 7880
Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers  om (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written 
aleph_0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph...the first letter in the Hebrew alphabet...is also the first letter of the Hebrew word...(einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
aleph0  |-  ( aleph `  (/) )  =  om

Proof of Theorem aleph0
StepHypRef Expression
1 df-aleph 7760 . . 3  |-  aleph  =  rec (har ,  om )
21fveq1i 5669 . 2  |-  ( aleph `  (/) )  =  ( rec (har ,  om ) `  (/) )
3 omex 7531 . . 3  |-  om  e.  _V
43rdg0 6615 . 2  |-  ( rec (har ,  om ) `  (/) )  =  om
52, 4eqtri 2407 1  |-  ( aleph `  (/) )  =  om
Colors of variables: wff set class
Syntax hints:    = wceq 1649   (/)c0 3571   omcom 4785   ` cfv 5394   reccrdg 6603  harchar 7457   alephcale 7756
This theorem is referenced by:  alephon  7883  alephcard  7884  alephgeom  7896  cardaleph  7903  alephfplem1  7918  pwcfsdom  8391  alephom  8393  winalim2  8504  aleph1re  12771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604  df-aleph 7760
  Copyright terms: Public domain W3C validator