MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph1re Unicode version

Theorem aleph1re 12450
Description: There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
aleph1re  |-  ( aleph `  1o )  ~<_  RR

Proof of Theorem aleph1re
StepHypRef Expression
1 aleph0 7626 . . . . . 6  |-  ( aleph `  (/) )  =  om
2 nnenom 10973 . . . . . . 7  |-  NN  ~~  om
32ensymi 6844 . . . . . 6  |-  om  ~~  NN
41, 3eqbrtri 3982 . . . . 5  |-  ( aleph `  (/) )  ~~  NN
5 ruc 12448 . . . . 5  |-  NN  ~<  RR
6 ensdomtr 6930 . . . . 5  |-  ( ( ( aleph `  (/) )  ~~  NN  /\  NN  ~<  RR )  ->  ( aleph `  (/) )  ~<  RR )
74, 5, 6mp2an 656 . . . 4  |-  ( aleph `  (/) )  ~<  RR
8 alephnbtwn2 7632 . . . 4  |-  -.  (
( aleph `  (/) )  ~<  RR  /\  RR  ~<  ( aleph `  suc  (/) ) )
97, 8mpto1 1528 . . 3  |-  -.  RR  ~<  ( aleph `  suc  (/) )
10 df-1o 6412 . . . . 5  |-  1o  =  suc  (/)
1110fveq2i 5426 . . . 4  |-  ( aleph `  1o )  =  (
aleph `  suc  (/) )
1211breq2i 3971 . . 3  |-  ( RR 
~<  ( aleph `  1o )  <->  RR 
~<  ( aleph `  suc  (/) ) )
139, 12mtbir 292 . 2  |-  -.  RR  ~<  ( aleph `  1o )
14 fvex 5437 . . 3  |-  ( aleph `  1o )  e.  _V
15 reex 8761 . . 3  |-  RR  e.  _V
16 domtri 8111 . . 3  |-  ( ( ( aleph `  1o )  e.  _V  /\  RR  e.  _V )  ->  ( (
aleph `  1o )  ~<_  RR  <->  -.  RR  ~<  ( aleph `  1o ) ) )
1714, 15, 16mp2an 656 . 2  |-  ( (
aleph `  1o )  ~<_  RR  <->  -.  RR  ~<  ( aleph `  1o ) )
1813, 17mpbir 202 1  |-  ( aleph `  1o )  ~<_  RR
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178    e. wcel 1621   _Vcvv 2740   (/)c0 3397   class class class wbr 3963   suc csuc 4331   omcom 4593   ` cfv 4638   1oc1o 6405    ~~ cen 6793    ~<_ cdom 6794    ~< csdm 6795   alephcale 7502   RRcr 8669   NNcn 9679
This theorem is referenced by:  aleph1irr  12451
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-ac2 8022  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-har 7205  df-card 7505  df-aleph 7506  df-ac 7676  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-n0 9898  df-z 9957  df-uz 10163  df-fz 10714  df-seq 10978
  Copyright terms: Public domain W3C validator