MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph1re Unicode version

Theorem aleph1re 12525
Description: There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
aleph1re  |-  ( aleph `  1o )  ~<_  RR

Proof of Theorem aleph1re
StepHypRef Expression
1 aleph0 7695 . . . . . 6  |-  ( aleph `  (/) )  =  om
2 nnenom 11044 . . . . . . 7  |-  NN  ~~  om
32ensymi 6913 . . . . . 6  |-  om  ~~  NN
41, 3eqbrtri 4044 . . . . 5  |-  ( aleph `  (/) )  ~~  NN
5 ruc 12523 . . . . 5  |-  NN  ~<  RR
6 ensdomtr 6999 . . . . 5  |-  ( ( ( aleph `  (/) )  ~~  NN  /\  NN  ~<  RR )  ->  ( aleph `  (/) )  ~<  RR )
74, 5, 6mp2an 653 . . . 4  |-  ( aleph `  (/) )  ~<  RR
8 alephnbtwn2 7701 . . . 4  |-  -.  (
( aleph `  (/) )  ~<  RR  /\  RR  ~<  ( aleph `  suc  (/) ) )
97, 8mpto1 1523 . . 3  |-  -.  RR  ~<  ( aleph `  suc  (/) )
10 df-1o 6481 . . . . 5  |-  1o  =  suc  (/)
1110fveq2i 5530 . . . 4  |-  ( aleph `  1o )  =  (
aleph `  suc  (/) )
1211breq2i 4033 . . 3  |-  ( RR 
~<  ( aleph `  1o )  <->  RR 
~<  ( aleph `  suc  (/) ) )
139, 12mtbir 290 . 2  |-  -.  RR  ~<  ( aleph `  1o )
14 fvex 5541 . . 3  |-  ( aleph `  1o )  e.  _V
15 reex 8830 . . 3  |-  RR  e.  _V
16 domtri 8180 . . 3  |-  ( ( ( aleph `  1o )  e.  _V  /\  RR  e.  _V )  ->  ( (
aleph `  1o )  ~<_  RR  <->  -.  RR  ~<  ( aleph `  1o ) ) )
1714, 15, 16mp2an 653 . 2  |-  ( (
aleph `  1o )  ~<_  RR  <->  -.  RR  ~<  ( aleph `  1o ) )
1813, 17mpbir 200 1  |-  ( aleph `  1o )  ~<_  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    e. wcel 1686   _Vcvv 2790   (/)c0 3457   class class class wbr 4025   suc csuc 4396   omcom 4658   ` cfv 5257   1oc1o 6474    ~~ cen 6862    ~<_ cdom 6863    ~< csdm 6864   alephcale 7571   RRcr 8738   NNcn 9748
This theorem is referenced by:  aleph1irr  12526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-ac2 8091  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-har 7274  df-card 7574  df-aleph 7575  df-ac 7745  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-n0 9968  df-z 10027  df-uz 10233  df-fz 10785  df-seq 11049
  Copyright terms: Public domain W3C validator