MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephcard Unicode version

Theorem alephcard 7713
Description: Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephcard  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )

Proof of Theorem alephcard
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . 5  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
21fveq2d 5545 . . . 4  |-  ( x  =  (/)  ->  ( card `  ( aleph `  x )
)  =  ( card `  ( aleph `  (/) ) ) )
32, 1eqeq12d 2310 . . 3  |-  ( x  =  (/)  ->  ( (
card `  ( aleph `  x
) )  =  (
aleph `  x )  <->  ( card `  ( aleph `  (/) ) )  =  ( aleph `  (/) ) ) )
4 fveq2 5541 . . . . 5  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
54fveq2d 5545 . . . 4  |-  ( x  =  y  ->  ( card `  ( aleph `  x
) )  =  (
card `  ( aleph `  y
) ) )
65, 4eqeq12d 2310 . . 3  |-  ( x  =  y  ->  (
( card `  ( aleph `  x
) )  =  (
aleph `  x )  <->  ( card `  ( aleph `  y )
)  =  ( aleph `  y ) ) )
7 fveq2 5541 . . . . 5  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
87fveq2d 5545 . . . 4  |-  ( x  =  suc  y  -> 
( card `  ( aleph `  x
) )  =  (
card `  ( aleph `  suc  y ) ) )
98, 7eqeq12d 2310 . . 3  |-  ( x  =  suc  y  -> 
( ( card `  ( aleph `  x ) )  =  ( aleph `  x
)  <->  ( card `  ( aleph `  suc  y ) )  =  ( aleph ` 
suc  y ) ) )
10 fveq2 5541 . . . . 5  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
1110fveq2d 5545 . . . 4  |-  ( x  =  A  ->  ( card `  ( aleph `  x
) )  =  (
card `  ( aleph `  A
) ) )
1211, 10eqeq12d 2310 . . 3  |-  ( x  =  A  ->  (
( card `  ( aleph `  x
) )  =  (
aleph `  x )  <->  ( card `  ( aleph `  A )
)  =  ( aleph `  A ) ) )
13 cardom 7635 . . . 4  |-  ( card `  om )  =  om
14 aleph0 7709 . . . . 5  |-  ( aleph `  (/) )  =  om
1514fveq2i 5544 . . . 4  |-  ( card `  ( aleph `  (/) ) )  =  ( card `  om )
1613, 15, 143eqtr4i 2326 . . 3  |-  ( card `  ( aleph `  (/) ) )  =  ( aleph `  (/) )
17 harcard 7627 . . . . 5  |-  ( card `  (har `  ( aleph `  y
) ) )  =  (har `  ( aleph `  y
) )
18 alephsuc 7711 . . . . . 6  |-  ( y  e.  On  ->  ( aleph `  suc  y )  =  (har `  ( aleph `  y ) ) )
1918fveq2d 5545 . . . . 5  |-  ( y  e.  On  ->  ( card `  ( aleph `  suc  y ) )  =  ( card `  (har `  ( aleph `  y )
) ) )
2017, 19, 183eqtr4a 2354 . . . 4  |-  ( y  e.  On  ->  ( card `  ( aleph `  suc  y ) )  =  ( aleph `  suc  y ) )
2120a1d 22 . . 3  |-  ( y  e.  On  ->  (
( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  ( aleph `  suc  y ) )  =  ( aleph `  suc  y ) ) )
22 vex 2804 . . . . . . 7  |-  x  e. 
_V
23 cardiun 7631 . . . . . . 7  |-  ( x  e.  _V  ->  ( A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  U_ y  e.  x  ( aleph `  y
) )  =  U_ y  e.  x  ( aleph `  y ) ) )
2422, 23ax-mp 8 . . . . . 6  |-  ( A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  U_ y  e.  x  ( aleph `  y
) )  =  U_ y  e.  x  ( aleph `  y ) )
2524adantl 452 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( card `  U_ y  e.  x  ( aleph `  y ) )  = 
U_ y  e.  x  ( aleph `  y )
)
26 alephlim 7710 . . . . . . . 8  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( aleph `  x )  = 
U_ y  e.  x  ( aleph `  y )
)
2722, 26mpan 651 . . . . . . 7  |-  ( Lim  x  ->  ( aleph `  x )  =  U_ y  e.  x  ( aleph `  y ) )
2827adantr 451 . . . . . 6  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( aleph `  x
)  =  U_ y  e.  x  ( aleph `  y ) )
2928fveq2d 5545 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( card `  ( aleph `  x ) )  =  ( card `  U_ y  e.  x  ( aleph `  y ) ) )
3025, 29, 283eqtr4d 2338 . . . 4  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( card `  ( aleph `  x ) )  =  ( aleph `  x
) )
3130ex 423 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  ( aleph `  x
) )  =  (
aleph `  x ) ) )
323, 6, 9, 12, 16, 21, 31tfinds 4666 . 2  |-  ( A  e.  On  ->  ( card `  ( aleph `  A
) )  =  (
aleph `  A ) )
33 card0 7607 . . 3  |-  ( card `  (/) )  =  (/)
34 alephfnon 7708 . . . . . . 7  |-  aleph  Fn  On
35 fndm 5359 . . . . . . 7  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
3634, 35ax-mp 8 . . . . . 6  |-  dom  aleph  =  On
3736eleq2i 2360 . . . . 5  |-  ( A  e.  dom  aleph  <->  A  e.  On )
38 ndmfv 5568 . . . . 5  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
3937, 38sylnbir 298 . . . 4  |-  ( -.  A  e.  On  ->  (
aleph `  A )  =  (/) )
4039fveq2d 5545 . . 3  |-  ( -.  A  e.  On  ->  (
card `  ( aleph `  A
) )  =  (
card `  (/) ) )
4133, 40, 393eqtr4a 2354 . 2  |-  ( -.  A  e.  On  ->  (
card `  ( aleph `  A
) )  =  (
aleph `  A ) )
4232, 41pm2.61i 156 1  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   (/)c0 3468   U_ciun 3921   Oncon0 4408   Lim wlim 4409   suc csuc 4410   omcom 4672   dom cdm 4705    Fn wfn 5266   ` cfv 5271  harchar 7286   cardccrd 7584   alephcale 7585
This theorem is referenced by:  alephnbtwn2  7715  alephord2  7719  alephsuc2  7723  alephislim  7726  alephsdom  7729  cardaleph  7732  cardalephex  7733  alephval3  7753  alephval2  8210  alephsuc3  8218  alephreg  8220  pwcfsdom  8221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589
  Copyright terms: Public domain W3C validator