MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp2 Structured version   Unicode version

Theorem alephexp2 8448
Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 8446 (which works if the base is less than or equal to the exponent) and infmap 8443 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
alephexp2  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~~  {
x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
Distinct variable group:    x, A

Proof of Theorem alephexp2
StepHypRef Expression
1 alephgeom 7955 . . . 4  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
2 fvex 5734 . . . . 5  |-  ( aleph `  A )  e.  _V
3 ssdomg 7145 . . . . 5  |-  ( (
aleph `  A )  e. 
_V  ->  ( om  C_  ( aleph `  A )  ->  om 
~<_  ( aleph `  A )
) )
42, 3ax-mp 8 . . . 4  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
51, 4sylbi 188 . . 3  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
6 domrefg 7134 . . . 4  |-  ( (
aleph `  A )  e. 
_V  ->  ( aleph `  A
)  ~<_  ( aleph `  A
) )
72, 6ax-mp 8 . . 3  |-  ( aleph `  A )  ~<_  ( aleph `  A )
8 infmap 8443 . . 3  |-  ( ( om  ~<_  ( aleph `  A
)  /\  ( aleph `  A )  ~<_  ( aleph `  A ) )  -> 
( ( aleph `  A
)  ^m  ( aleph `  A ) )  ~~  { x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
95, 7, 8sylancl 644 . 2  |-  ( A  e.  On  ->  (
( aleph `  A )  ^m  ( aleph `  A )
)  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } )
10 pm3.2 435 . . . . 5  |-  ( A  e.  On  ->  ( A  e.  On  ->  ( A  e.  On  /\  A  e.  On )
) )
1110pm2.43i 45 . . . 4  |-  ( A  e.  On  ->  ( A  e.  On  /\  A  e.  On ) )
12 ssid 3359 . . . 4  |-  A  C_  A
13 alephexp1 8446 . . . 4  |-  ( ( ( A  e.  On  /\  A  e.  On )  /\  A  C_  A
)  ->  ( ( aleph `  A )  ^m  ( aleph `  A )
)  ~~  ( 2o  ^m  ( aleph `  A )
) )
1411, 12, 13sylancl 644 . . 3  |-  ( A  e.  On  ->  (
( aleph `  A )  ^m  ( aleph `  A )
)  ~~  ( 2o  ^m  ( aleph `  A )
) )
15 enen1 7239 . . 3  |-  ( ( ( aleph `  A )  ^m  ( aleph `  A )
)  ~~  ( 2o  ^m  ( aleph `  A )
)  ->  ( (
( aleph `  A )  ^m  ( aleph `  A )
)  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) }  <-> 
( 2o  ^m  ( aleph `  A ) ) 
~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A
) ) } ) )
1614, 15syl 16 . 2  |-  ( A  e.  On  ->  (
( ( aleph `  A
)  ^m  ( aleph `  A ) )  ~~  { x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) }  <->  ( 2o  ^m  ( aleph `  A )
)  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } ) )
179, 16mpbid 202 1  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~~  {
x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   {cab 2421   _Vcvv 2948    C_ wss 3312   class class class wbr 4204   Oncon0 4573   omcom 4837   ` cfv 5446  (class class class)co 6073   2oc2o 6710    ^m cmap 7010    ~~ cen 7098    ~<_ cdom 7099   alephcale 7815
This theorem is referenced by:  gch-kn  8548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-ac2 8335
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-har 7518  df-card 7818  df-aleph 7819  df-acn 7821  df-ac 7989
  Copyright terms: Public domain W3C validator