MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Unicode version

Theorem alephle 8000
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 8021, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)

Proof of Theorem alephle
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 21 . . 3  |-  ( x  =  y  ->  x  =  y )
2 fveq2 5757 . . 3  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
31, 2sseq12d 3363 . 2  |-  ( x  =  y  ->  (
x  C_  ( aleph `  x )  <->  y  C_  ( aleph `  y )
) )
4 id 21 . . 3  |-  ( x  =  A  ->  x  =  A )
5 fveq2 5757 . . 3  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
64, 5sseq12d 3363 . 2  |-  ( x  =  A  ->  (
x  C_  ( aleph `  x )  <->  A  C_  ( aleph `  A ) ) )
7 alephord2i 7989 . . . . . 6  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( aleph `  y )  e.  ( aleph `  x )
) )
87imp 420 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( aleph `  y )  e.  ( aleph `  x )
)
9 onelon 4635 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
10 alephon 7981 . . . . . 6  |-  ( aleph `  x )  e.  On
11 ontr2 4657 . . . . . 6  |-  ( ( y  e.  On  /\  ( aleph `  x )  e.  On )  ->  (
( y  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  x )
)  ->  y  e.  ( aleph `  x )
) )
129, 10, 11sylancl 645 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( y  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  x )
)  ->  y  e.  ( aleph `  x )
) )
138, 12mpan2d 657 . . . 4  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( y  C_  ( aleph `  y )  -> 
y  e.  ( aleph `  x ) ) )
1413ralimdva 2790 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  y  C_  ( aleph `  y
)  ->  A. y  e.  x  y  e.  ( aleph `  x )
) )
1510onirri 4717 . . . . 5  |-  -.  ( aleph `  x )  e.  ( aleph `  x )
16 eleq1 2502 . . . . . 6  |-  ( y  =  ( aleph `  x
)  ->  ( y  e.  ( aleph `  x )  <->  (
aleph `  x )  e.  ( aleph `  x )
) )
1716rspccv 3055 . . . . 5  |-  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  ( ( aleph `  x
)  e.  x  -> 
( aleph `  x )  e.  ( aleph `  x )
) )
1815, 17mtoi 172 . . . 4  |-  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  -.  ( aleph `  x
)  e.  x )
19 ontri1 4644 . . . . 5  |-  ( ( x  e.  On  /\  ( aleph `  x )  e.  On )  ->  (
x  C_  ( aleph `  x )  <->  -.  ( aleph `  x )  e.  x ) )
2010, 19mpan2 654 . . . 4  |-  ( x  e.  On  ->  (
x  C_  ( aleph `  x )  <->  -.  ( aleph `  x )  e.  x ) )
2118, 20syl5ibr 214 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  x  C_  ( aleph `  x )
) )
2214, 21syld 43 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  y  C_  ( aleph `  y
)  ->  x  C_  ( aleph `  x ) ) )
233, 6, 22tfis3 4866 1  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711    C_ wss 3306   Oncon0 4610   ` cfv 5483   alephcale 7854
This theorem is referenced by:  cardaleph  8001  alephfp  8020  winafp  8603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-oi 7508  df-har 7555  df-card 7857  df-aleph 7858
  Copyright terms: Public domain W3C validator