MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephlim Structured version   Unicode version

Theorem alephlim 7953
Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephlim  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ x  e.  A  ( aleph `  x )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem alephlim
StepHypRef Expression
1 rdglim2a 6694 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( rec (har ,  om ) `  A )  =  U_ x  e.  A  ( rec (har ,  om ) `  x ) )
2 df-aleph 7832 . . 3  |-  aleph  =  rec (har ,  om )
32fveq1i 5732 . 2  |-  ( aleph `  A )  =  ( rec (har ,  om ) `  A )
42fveq1i 5732 . . . 4  |-  ( aleph `  x )  =  ( rec (har ,  om ) `  x )
54a1i 11 . . 3  |-  ( x  e.  A  ->  ( aleph `  x )  =  ( rec (har ,  om ) `  x ) )
65iuneq2i 4113 . 2  |-  U_ x  e.  A  ( aleph `  x )  =  U_ x  e.  A  ( rec (har ,  om ) `  x )
71, 3, 63eqtr4g 2495 1  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ x  e.  A  ( aleph `  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   U_ciun 4095   Lim wlim 4585   omcom 4848   ` cfv 5457   reccrdg 6670  harchar 7527   alephcale 7828
This theorem is referenced by:  alephon  7955  alephcard  7956  alephordi  7960  cardaleph  7975  alephsing  8161  pwcfsdom  8463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-recs 6636  df-rdg 6671  df-aleph 7832
  Copyright terms: Public domain W3C validator