MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephlim Unicode version

Theorem alephlim 7937
Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephlim  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ x  e.  A  ( aleph `  x )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem alephlim
StepHypRef Expression
1 rdglim2a 6682 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( rec (har ,  om ) `  A )  =  U_ x  e.  A  ( rec (har ,  om ) `  x ) )
2 df-aleph 7816 . . 3  |-  aleph  =  rec (har ,  om )
32fveq1i 5720 . 2  |-  ( aleph `  A )  =  ( rec (har ,  om ) `  A )
42fveq1i 5720 . . . 4  |-  ( aleph `  x )  =  ( rec (har ,  om ) `  x )
54a1i 11 . . 3  |-  ( x  e.  A  ->  ( aleph `  x )  =  ( rec (har ,  om ) `  x ) )
65iuneq2i 4103 . 2  |-  U_ x  e.  A  ( aleph `  x )  =  U_ x  e.  A  ( rec (har ,  om ) `  x )
71, 3, 63eqtr4g 2492 1  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ x  e.  A  ( aleph `  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   U_ciun 4085   Lim wlim 4574   omcom 4836   ` cfv 5445   reccrdg 6658  harchar 7513   alephcale 7812
This theorem is referenced by:  alephon  7939  alephcard  7940  alephordi  7944  cardaleph  7959  alephsing  8145  pwcfsdom  8447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-recs 6624  df-rdg 6659  df-aleph 7816
  Copyright terms: Public domain W3C validator