MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn Unicode version

Theorem alephnbtwn 7694
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephnbtwn  |-  ( (
card `  B )  =  B  ->  -.  (
( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) )
Dummy variable  x is distinct from all other variables.

Proof of Theorem alephnbtwn
StepHypRef Expression
1 alephon 7692 . . . . . . . 8  |-  ( aleph `  A )  e.  On
2 id 21 . . . . . . . . . 10  |-  ( (
card `  B )  =  B  ->  ( card `  B )  =  B )
3 cardon 7573 . . . . . . . . . 10  |-  ( card `  B )  e.  On
42, 3syl6eqelr 2374 . . . . . . . . 9  |-  ( (
card `  B )  =  B  ->  B  e.  On )
5 onenon 7578 . . . . . . . . 9  |-  ( B  e.  On  ->  B  e.  dom  card )
64, 5syl 17 . . . . . . . 8  |-  ( (
card `  B )  =  B  ->  B  e. 
dom  card )
7 cardsdomel 7603 . . . . . . . 8  |-  ( ( ( aleph `  A )  e.  On  /\  B  e. 
dom  card )  ->  (
( aleph `  A )  ~<  B  <->  ( aleph `  A
)  e.  ( card `  B ) ) )
81, 6, 7sylancr 646 . . . . . . 7  |-  ( (
card `  B )  =  B  ->  ( (
aleph `  A )  ~<  B 
<->  ( aleph `  A )  e.  ( card `  B
) ) )
9 eleq2 2346 . . . . . . 7  |-  ( (
card `  B )  =  B  ->  ( (
aleph `  A )  e.  ( card `  B
)  <->  ( aleph `  A
)  e.  B ) )
108, 9bitrd 246 . . . . . 6  |-  ( (
card `  B )  =  B  ->  ( (
aleph `  A )  ~<  B 
<->  ( aleph `  A )  e.  B ) )
1110adantl 454 . . . . 5  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  (
( aleph `  A )  ~<  B  <->  ( aleph `  A
)  e.  B ) )
12 alephsuc 7691 . . . . . . . . . . 11  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  (har `  ( aleph `  A ) ) )
13 onenon 7578 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  e.  On  ->  ( aleph `  A )  e.  dom  card )
14 harval2 7626 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  e. 
dom  card  ->  (har `  ( aleph `  A ) )  =  |^| { x  e.  On  |  ( aleph `  A )  ~<  x } )
151, 13, 14mp2b 11 . . . . . . . . . . 11  |-  (har `  ( aleph `  A )
)  =  |^| { x  e.  On  |  ( aleph `  A )  ~<  x }
1612, 15syl6eq 2333 . . . . . . . . . 10  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  |^| { x  e.  On  |  ( aleph `  A )  ~<  x } )
1716eleq2d 2352 . . . . . . . . 9  |-  ( A  e.  On  ->  ( B  e.  ( aleph ` 
suc  A )  <->  B  e.  |^|
{ x  e.  On  |  ( aleph `  A
)  ~<  x } ) )
1817biimpd 200 . . . . . . . 8  |-  ( A  e.  On  ->  ( B  e.  ( aleph ` 
suc  A )  ->  B  e.  |^| { x  e.  On  |  ( aleph `  A )  ~<  x } ) )
19 breq2 4029 . . . . . . . . 9  |-  ( x  =  B  ->  (
( aleph `  A )  ~<  x  <->  ( aleph `  A
)  ~<  B ) )
2019onnminsb 4595 . . . . . . . 8  |-  ( B  e.  On  ->  ( B  e.  |^| { x  e.  On  |  ( aleph `  A )  ~<  x }  ->  -.  ( aleph `  A )  ~<  B ) )
2118, 20sylan9 640 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  e.  (
aleph `  suc  A )  ->  -.  ( aleph `  A )  ~<  B ) )
2221con2d 109 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  ~<  B  ->  -.  B  e.  ( aleph ` 
suc  A ) ) )
234, 22sylan2 462 . . . . 5  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  (
( aleph `  A )  ~<  B  ->  -.  B  e.  ( aleph `  suc  A ) ) )
2411, 23sylbird 228 . . . 4  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  (
( aleph `  A )  e.  B  ->  -.  B  e.  ( aleph `  suc  A ) ) )
25 imnan 413 . . . 4  |-  ( ( ( aleph `  A )  e.  B  ->  -.  B  e.  ( aleph `  suc  A ) )  <->  -.  ( ( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) )
2624, 25sylib 190 . . 3  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  -.  ( ( aleph `  A
)  e.  B  /\  B  e.  ( aleph ` 
suc  A ) ) )
2726ex 425 . 2  |-  ( A  e.  On  ->  (
( card `  B )  =  B  ->  -.  (
( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) ) )
28 n0i 3462 . . . . . . 7  |-  ( B  e.  ( aleph `  suc  A )  ->  -.  ( aleph `  suc  A )  =  (/) )
29 alephfnon 7688 . . . . . . . . . 10  |-  aleph  Fn  On
30 fndm 5309 . . . . . . . . . 10  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
3129, 30ax-mp 10 . . . . . . . . 9  |-  dom  aleph  =  On
3231eleq2i 2349 . . . . . . . 8  |-  ( suc 
A  e.  dom  aleph  <->  suc  A  e.  On )
33 ndmfv 5514 . . . . . . . 8  |-  ( -. 
suc  A  e.  dom  aleph  ->  ( aleph `  suc  A )  =  (/) )
3432, 33sylnbir 300 . . . . . . 7  |-  ( -. 
suc  A  e.  On  ->  ( aleph `  suc  A )  =  (/) )
3528, 34nsyl2 121 . . . . . 6  |-  ( B  e.  ( aleph `  suc  A )  ->  suc  A  e.  On )
36 sucelon 4608 . . . . . 6  |-  ( A  e.  On  <->  suc  A  e.  On )
3735, 36sylibr 205 . . . . 5  |-  ( B  e.  ( aleph `  suc  A )  ->  A  e.  On )
3837adantl 454 . . . 4  |-  ( ( ( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) )  ->  A  e.  On )
3938con3i 129 . . 3  |-  ( -.  A  e.  On  ->  -.  ( ( aleph `  A
)  e.  B  /\  B  e.  ( aleph ` 
suc  A ) ) )
4039a1d 24 . 2  |-  ( -.  A  e.  On  ->  ( ( card `  B
)  =  B  ->  -.  ( ( aleph `  A
)  e.  B  /\  B  e.  ( aleph ` 
suc  A ) ) ) )
4127, 40pm2.61i 158 1  |-  ( (
card `  B )  =  B  ->  -.  (
( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   {crab 2549   (/)c0 3457   |^|cint 3864   class class class wbr 4025   Oncon0 4392   suc csuc 4394   dom cdm 4689    Fn wfn 5217   ` cfv 5222    ~< csdm 6858  harchar 7266   cardccrd 7564   alephcale 7565
This theorem is referenced by:  alephnbtwn2  7695
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-oi 7221  df-har 7268  df-card 7568  df-aleph 7569
  Copyright terms: Public domain W3C validator