MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Unicode version

Theorem alephom 8223
Description: From canth2 7030, we know that  (
aleph `  0 )  < 
( 2 ^ om ), but we cannot prove that  ( 2 ^ om )  =  ( aleph `  1 ) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement  ( aleph `  A )  <  ( 2 ^ om ) is consistent for any ordinal  A). However, we can prove that  ( 2 ^ om ) is not equal to  ( aleph `  om ), nor  ( aleph `  ( aleph `  om ) ), on cofinality grounds, because by Konig's Theorem konigth 8207 (in the form of cfpwsdom 8222), 
( 2 ^ om ) has uncountable cofinality, which eliminates limit alephs like 
( aleph `  om ). (The first limit aleph that is not eliminated is  (
aleph `  ( aleph `  1
) ), which has cofinality  ( aleph `  1 ).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom  |-  ( card `  ( 2o  ^m  om ) )  =/=  ( aleph `  om )

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 7014 . 2  |-  -.  om  ~<  om
2 2onn 6654 . . . . . 6  |-  2o  e.  om
32elexi 2810 . . . . 5  |-  2o  e.  _V
4 domrefg 6912 . . . . 5  |-  ( 2o  e.  _V  ->  2o  ~<_  2o )
53cfpwsdom 8222 . . . . 5  |-  ( 2o  ~<_  2o  ->  ( aleph `  (/) )  ~<  ( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) ) )
63, 4, 5mp2b 9 . . . 4  |-  ( aleph `  (/) )  ~<  ( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )
7 aleph0 7709 . . . . . 6  |-  ( aleph `  (/) )  =  om
87a1i 10 . . . . 5  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( aleph `  (/) )  =  om )
97oveq2i 5885 . . . . . . . . . 10  |-  ( 2o 
^m  ( aleph `  (/) ) )  =  ( 2o  ^m  om )
109fveq2i 5544 . . . . . . . . 9  |-  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) )  =  ( card `  ( 2o  ^m  om ) )
1110eqeq1i 2303 . . . . . . . 8  |-  ( (
card `  ( 2o  ^m  ( aleph `  (/) ) ) )  =  ( aleph ` 
om )  <->  ( card `  ( 2o  ^m  om ) )  =  (
aleph `  om ) )
1211biimpri 197 . . . . . . 7  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( card `  ( 2o  ^m  ( aleph `  (/) ) ) )  =  ( aleph ` 
om ) )
1312fveq2d 5545 . . . . . 6  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )  =  ( cf `  ( aleph ` 
om ) ) )
14 limom 4687 . . . . . . . 8  |-  Lim  om
15 alephsing 7918 . . . . . . . 8  |-  ( Lim 
om  ->  ( cf `  ( aleph `  om ) )  =  ( cf `  om ) )
1614, 15ax-mp 8 . . . . . . 7  |-  ( cf `  ( aleph `  om ) )  =  ( cf `  om )
17 cfom 7906 . . . . . . 7  |-  ( cf ` 
om )  =  om
1816, 17eqtri 2316 . . . . . 6  |-  ( cf `  ( aleph `  om ) )  =  om
1913, 18syl6eq 2344 . . . . 5  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )  =  om )
208, 19breq12d 4052 . . . 4  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( ( aleph `  (/) )  ~< 
( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )  <->  om  ~<  om )
)
216, 20mpbii 202 . . 3  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  ->  om  ~<  om )
2221necon3bi 2500 . 2  |-  ( -. 
om  ~<  om  ->  ( card `  ( 2o  ^m  om ) )  =/=  ( aleph `  om ) )
231, 22ax-mp 8 1  |-  ( card `  ( 2o  ^m  om ) )  =/=  ( aleph `  om )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801   (/)c0 3468   class class class wbr 4039   Lim wlim 4409   omcom 4672   ` cfv 5271  (class class class)co 5874   2oc2o 6489    ^m cmap 6788    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584   alephcale 7585   cfccf 7586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-smo 6379  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589  df-cf 7590  df-acn 7591  df-ac 7759
  Copyright terms: Public domain W3C validator