MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord2i Unicode version

Theorem alephord2i 7706
Description: Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
alephord2i  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  e.  ( aleph `  B )
) )

Proof of Theorem alephord2i
StepHypRef Expression
1 onelon 4419 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
2 alephord2 7705 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  (
aleph `  A )  e.  ( aleph `  B )
) )
32biimpd 198 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( aleph `  A )  e.  ( aleph `  B )
) )
43expimpd 586 . . 3  |-  ( A  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( aleph `  A
)  e.  ( aleph `  B ) ) )
51, 4mpcom 32 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( aleph `  A )  e.  ( aleph `  B )
)
65ex 423 1  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  e.  ( aleph `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1686   Oncon0 4394   ` cfv 5257   alephcale 7571
This theorem is referenced by:  alephle  7717  alephsmo  7731  alephfp  7737  alephval3  7739  alephsing  7904  pwcfsdom  8207  winalim2  8320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-oi 7227  df-har 7274  df-card 7574  df-aleph 7575
  Copyright terms: Public domain W3C validator