MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephreg Unicode version

Theorem alephreg 8199
Description: A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephreg  |-  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )

Proof of Theorem alephreg
Dummy variables  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephordilem1 7695 . . . 4  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( aleph `  suc  A ) )
2 alephon 7691 . . . . . . . . 9  |-  ( aleph ` 
suc  A )  e.  On
3 cff1 7879 . . . . . . . . 9  |-  ( (
aleph `  suc  A )  e.  On  ->  E. f
( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) ) )
42, 3ax-mp 8 . . . . . . . 8  |-  E. f
( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )
5 fvex 5499 . . . . . . . . . . . . 13  |-  ( cf `  ( aleph `  suc  A ) )  e.  _V
6 fvex 5499 . . . . . . . . . . . . . 14  |-  ( f `
 y )  e. 
_V
76sucex 4600 . . . . . . . . . . . . 13  |-  suc  (
f `  y )  e.  _V
85, 7iunex 5731 . . . . . . . . . . . 12  |-  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  e. 
_V
9 f1f 5402 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  suc  A ) ) -1-1-> ( aleph `  suc  A )  ->  f :
( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )
109ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  f :
( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )
11 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )
122oneli 4498 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( aleph `  suc  A )  ->  x  e.  On )
13 ffvelrn 5624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph `  suc  A ) ) )  ->  (
f `  y )  e.  ( aleph `  suc  A ) )
14 onelon 4415 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( aleph `  suc  A )  e.  On  /\  (
f `  y )  e.  ( aleph `  suc  A ) )  ->  ( f `  y )  e.  On )
152, 13, 14sylancr 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph `  suc  A ) ) )  ->  (
f `  y )  e.  On )
16 onsssuc 4478 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  On  /\  ( f `  y
)  e.  On )  ->  ( x  C_  ( f `  y
)  <->  x  e.  suc  ( f `  y
) ) )
1715, 16sylan2 460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  On  /\  ( f : ( cf `  ( aleph ` 
suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph ` 
suc  A ) ) ) )  ->  (
x  C_  ( f `  y )  <->  x  e.  suc  ( f `  y
) ) )
1817anassrs 629 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  /\  y  e.  ( cf `  ( aleph `  suc  A ) ) )  ->  (
x  C_  ( f `  y )  <->  x  e.  suc  ( f `  y
) ) )
1918rexbidva 2560 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  ( f `  y
)  <->  E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  e.  suc  (
f `  y )
) )
20 eliun 3909 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  <->  E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  e.  suc  ( f `  y
) )
2119, 20syl6bbr 254 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  ( f `  y
)  <->  x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
2221ancoms 439 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  x  e.  On )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  ( f `  y
)  <->  x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
2312, 22sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  x  e.  ( aleph `  suc  A ) )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  (
f `  y )  <->  x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
2423ralbidva 2559 . . . . . . . . . . . . . . 15  |-  ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  ->  ( A. x  e.  ( aleph ` 
suc  A ) E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  (
f `  y )  <->  A. x  e.  ( aleph ` 
suc  A ) x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
25 dfss3 3170 . . . . . . . . . . . . . . 15  |-  ( (
aleph `  suc  A ) 
C_  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y )  <->  A. x  e.  ( aleph `  suc  A ) x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) )
2624, 25syl6bbr 254 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  ->  ( A. x  e.  ( aleph ` 
suc  A ) E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  (
f `  y )  <->  (
aleph `  suc  A ) 
C_  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y ) ) )
2726biimpa 470 . . . . . . . . . . . . 13  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  -> 
( aleph `  suc  A ) 
C_  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y ) )
2810, 11, 27syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  ( aleph ` 
suc  A )  C_  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) )
29 ssdomg 6902 . . . . . . . . . . . 12  |-  ( U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  e. 
_V  ->  ( ( aleph ` 
suc  A )  C_  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  -> 
( aleph `  suc  A )  ~<_ 
U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y ) ) )
308, 28, 29mpsyl 59 . . . . . . . . . . 11  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  ( aleph ` 
suc  A )  ~<_  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) )
31 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  A  e.  On )
32 suceloni 4602 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  suc  A  e.  On )
33 alephislim 7705 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
A  e.  On  <->  Lim  ( aleph ` 
suc  A ) )
34 limsuc 4638 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  ( aleph `  suc  A )  ->  ( ( f `
 y )  e.  ( aleph `  suc  A )  <->  suc  ( f `  y
)  e.  ( aleph ` 
suc  A ) ) )
3533, 34sylbi 187 . . . . . . . . . . . . . . . . . 18  |-  ( suc 
A  e.  On  ->  ( ( f `  y
)  e.  ( aleph ` 
suc  A )  <->  suc  ( f `
 y )  e.  ( aleph `  suc  A ) ) )
3632, 35syl 15 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  On  ->  (
( f `  y
)  e.  ( aleph ` 
suc  A )  <->  suc  ( f `
 y )  e.  ( aleph `  suc  A ) ) )
37 breq1 4026 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  suc  ( f `
 y )  -> 
( z  ~<  ( aleph `  suc  A )  <->  suc  ( f `  y
)  ~<  ( aleph `  suc  A ) ) )
38 alephcard 7692 . . . . . . . . . . . . . . . . . . . 20  |-  ( card `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )
39 iscard 7603 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
card `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A )  <-> 
( ( aleph `  suc  A )  e.  On  /\  A. z  e.  ( aleph ` 
suc  A ) z 
~<  ( aleph `  suc  A ) ) )
4039simprbi 450 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A )  ->  A. z  e.  (
aleph `  suc  A ) z  ~<  ( aleph ` 
suc  A ) )
4138, 40ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  A. z  e.  ( aleph `  suc  A ) z  ~<  ( aleph ` 
suc  A )
4237, 41vtoclri 2858 . . . . . . . . . . . . . . . . . 18  |-  ( suc  ( f `  y
)  e.  ( aleph ` 
suc  A )  ->  suc  ( f `  y
)  ~<  ( aleph `  suc  A ) )
43 alephsucdom 7701 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  ( suc  ( f `  y
)  ~<_  ( aleph `  A
)  <->  suc  ( f `  y )  ~<  ( aleph `  suc  A ) ) )
4442, 43syl5ibr 212 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  On  ->  ( suc  ( f `  y
)  e.  ( aleph ` 
suc  A )  ->  suc  ( f `  y
)  ~<_  ( aleph `  A
) ) )
4536, 44sylbid 206 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  ->  (
( f `  y
)  e.  ( aleph ` 
suc  A )  ->  suc  ( f `  y
)  ~<_  ( aleph `  A
) ) )
4613, 45syl5 28 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  (
( f : ( cf `  ( aleph ` 
suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph ` 
suc  A ) ) )  ->  suc  ( f `
 y )  ~<_  (
aleph `  A ) ) )
4746expdimp 426 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  (
y  e.  ( cf `  ( aleph `  suc  A ) )  ->  suc  ( f `
 y )  ~<_  (
aleph `  A ) ) )
4847ralrimiv 2625 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  A. y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  (
aleph `  A ) )
49 iundom 8159 . . . . . . . . . . . . 13  |-  ( ( ( cf `  ( aleph `  suc  A ) )  e.  _V  /\  A. y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  (
aleph `  A ) )  ->  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y )  ~<_  ( ( cf `  ( aleph ` 
suc  A ) )  X.  ( aleph `  A
) ) )
505, 48, 49sylancr 644 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
5131, 10, 50syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
52 domtr 6909 . . . . . . . . . . 11  |-  ( ( ( aleph `  suc  A )  ~<_ 
U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y )  /\  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )  ->  ( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
5330, 51, 52syl2anc 642 . . . . . . . . . 10  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  ( aleph ` 
suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
5453expcom 424 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  (
( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  -> 
( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) ) )
5554exlimdv 1664 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  ( E. f ( f : ( cf `  ( aleph `  suc  A ) ) -1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  -> 
( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) ) )
564, 55mpi 16 . . . . . . 7  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  ( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
57 alephgeom 7704 . . . . . . . . . 10  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
58 alephon 7691 . . . . . . . . . . 11  |-  ( aleph `  A )  e.  On
59 infxpen 7637 . . . . . . . . . . 11  |-  ( ( ( aleph `  A )  e.  On  /\  om  C_  ( aleph `  A ) )  ->  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )
6058, 59mpan 651 . . . . . . . . . 10  |-  ( om  C_  ( aleph `  A )  ->  ( ( aleph `  A
)  X.  ( aleph `  A ) )  ~~  ( aleph `  A )
)
6157, 60sylbi 187 . . . . . . . . 9  |-  ( A  e.  On  ->  (
( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )
62 breq1 4026 . . . . . . . . . . . 12  |-  ( z  =  ( cf `  ( aleph `  suc  A ) )  ->  ( z  ~<  ( aleph `  suc  A )  <-> 
( cf `  ( aleph `  suc  A ) )  ~<  ( aleph ` 
suc  A ) ) )
6362, 41vtoclri 2858 . . . . . . . . . . 11  |-  ( ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A )  ->  ( cf `  ( aleph `  suc  A ) )  ~<  ( aleph ` 
suc  A ) )
64 alephsucdom 7701 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  ~<_  ( aleph `  A
)  <->  ( cf `  ( aleph `  suc  A ) )  ~<  ( aleph ` 
suc  A ) ) )
6563, 64syl5ibr 212 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( cf `  ( aleph `  suc  A ) )  ~<_  ( aleph `  A
) ) )
66 fvex 5499 . . . . . . . . . . 11  |-  ( aleph `  A )  e.  _V
6766xpdom1 6956 . . . . . . . . . 10  |-  ( ( cf `  ( aleph ` 
suc  A ) )  ~<_  ( aleph `  A )  ->  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
) )
6865, 67syl6 29 . . . . . . . . 9  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
) ) )
69 domentr 6915 . . . . . . . . . 10  |-  ( ( ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
)  /\  ( ( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )  -> 
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) )
7069expcom 424 . . . . . . . . 9  |-  ( ( ( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A )  ->  (
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
)  ->  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( aleph `  A )
) )
7161, 68, 70sylsyld 52 . . . . . . . 8  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) ) )
7271imp 418 . . . . . . 7  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  (
( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) )
73 domtr 6909 . . . . . . 7  |-  ( ( ( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  /\  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  A
) )
7456, 72, 73syl2anc 642 . . . . . 6  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  A )
)
75 domnsym 6982 . . . . . 6  |-  ( (
aleph `  suc  A )  ~<_  ( aleph `  A )  ->  -.  ( aleph `  A
)  ~<  ( aleph `  suc  A ) )
7674, 75syl 15 . . . . 5  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  -.  ( aleph `  A )  ~<  ( aleph `  suc  A ) )
7776ex 423 . . . 4  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  ->  -.  ( aleph `  A )  ~<  ( aleph `  suc  A ) ) )
781, 77mt2d 109 . . 3  |-  ( A  e.  On  ->  -.  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )
79 cfon 7876 . . . . 5  |-  ( cf `  ( aleph `  suc  A ) )  e.  On
80 cfle 7875 . . . . . 6  |-  ( cf `  ( aleph `  suc  A ) )  C_  ( aleph ` 
suc  A )
81 onsseleq 4431 . . . . . 6  |-  ( ( ( cf `  ( aleph `  suc  A ) )  e.  On  /\  ( aleph `  suc  A )  e.  On )  -> 
( ( cf `  ( aleph `  suc  A ) )  C_  ( aleph ` 
suc  A )  <->  ( ( cf `  ( aleph `  suc  A ) )  e.  (
aleph `  suc  A )  \/  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) ) ) )
8280, 81mpbii 202 . . . . 5  |-  ( ( ( cf `  ( aleph `  suc  A ) )  e.  On  /\  ( aleph `  suc  A )  e.  On )  -> 
( ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  \/  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) ) )
8379, 2, 82mp2an 653 . . . 4  |-  ( ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A )  \/  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) )
8483ori 364 . . 3  |-  ( -.  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) )
8578, 84syl 15 . 2  |-  ( A  e.  On  ->  ( cf `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A ) )
86 cf0 7872 . . 3  |-  ( cf `  (/) )  =  (/)
87 alephfnon 7687 . . . . . . . 8  |-  aleph  Fn  On
88 fndm 5308 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
8987, 88ax-mp 8 . . . . . . 7  |-  dom  aleph  =  On
9089eleq2i 2347 . . . . . 6  |-  ( suc 
A  e.  dom  aleph  <->  suc  A  e.  On )
91 sucelon 4606 . . . . . 6  |-  ( A  e.  On  <->  suc  A  e.  On )
9290, 91bitr4i 243 . . . . 5  |-  ( suc 
A  e.  dom  aleph  <->  A  e.  On )
93 ndmfv 5513 . . . . 5  |-  ( -. 
suc  A  e.  dom  aleph  ->  ( aleph `  suc  A )  =  (/) )
9492, 93sylnbir 298 . . . 4  |-  ( -.  A  e.  On  ->  (
aleph `  suc  A )  =  (/) )
9594fveq2d 5489 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  ( aleph ` 
suc  A ) )  =  ( cf `  (/) ) )
9686, 95, 943eqtr4a 2341 . 2  |-  ( -.  A  e.  On  ->  ( cf `  ( aleph ` 
suc  A ) )  =  ( aleph `  suc  A ) )
9785, 96pm2.61i 156 1  |-  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   U_ciun 3905   class class class wbr 4023   Oncon0 4390   Lim wlim 4391   suc csuc 4392   omcom 4654    X. cxp 4685   dom cdm 4687    Fn wfn 5215   -->wf 5216   -1-1->wf1 5217   ` cfv 5220    ~~ cen 6855    ~<_ cdom 6856    ~< csdm 6857   cardccrd 7563   alephcale 7564   cfccf 7565
This theorem is referenced by:  pwcfsdom  8200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-ac2 8084
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-oi 7220  df-har 7267  df-card 7567  df-aleph 7568  df-cf 7569  df-acn 7570  df-ac 7738
  Copyright terms: Public domain W3C validator