MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephreg Structured version   Unicode version

Theorem alephreg 8459
Description: A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephreg  |-  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )

Proof of Theorem alephreg
Dummy variables  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephordilem1 7956 . . . 4  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( aleph `  suc  A ) )
2 alephon 7952 . . . . . . . . 9  |-  ( aleph ` 
suc  A )  e.  On
3 cff1 8140 . . . . . . . . 9  |-  ( (
aleph `  suc  A )  e.  On  ->  E. f
( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) ) )
42, 3ax-mp 8 . . . . . . . 8  |-  E. f
( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )
5 fvex 5744 . . . . . . . . . . . . 13  |-  ( cf `  ( aleph `  suc  A ) )  e.  _V
6 fvex 5744 . . . . . . . . . . . . . 14  |-  ( f `
 y )  e. 
_V
76sucex 4793 . . . . . . . . . . . . 13  |-  suc  (
f `  y )  e.  _V
85, 7iunex 5993 . . . . . . . . . . . 12  |-  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  e. 
_V
9 f1f 5641 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  suc  A ) ) -1-1-> ( aleph `  suc  A )  ->  f :
( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )
109ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  f :
( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )
11 simplr 733 . . . . . . . . . . . . 13  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )
122oneli 4691 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( aleph `  suc  A )  ->  x  e.  On )
13 ffvelrn 5870 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph `  suc  A ) ) )  ->  (
f `  y )  e.  ( aleph `  suc  A ) )
14 onelon 4608 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( aleph `  suc  A )  e.  On  /\  (
f `  y )  e.  ( aleph `  suc  A ) )  ->  ( f `  y )  e.  On )
152, 13, 14sylancr 646 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph `  suc  A ) ) )  ->  (
f `  y )  e.  On )
16 onsssuc 4671 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  On  /\  ( f `  y
)  e.  On )  ->  ( x  C_  ( f `  y
)  <->  x  e.  suc  ( f `  y
) ) )
1715, 16sylan2 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  On  /\  ( f : ( cf `  ( aleph ` 
suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph ` 
suc  A ) ) ) )  ->  (
x  C_  ( f `  y )  <->  x  e.  suc  ( f `  y
) ) )
1817anassrs 631 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  /\  y  e.  ( cf `  ( aleph `  suc  A ) ) )  ->  (
x  C_  ( f `  y )  <->  x  e.  suc  ( f `  y
) ) )
1918rexbidva 2724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  ( f `  y
)  <->  E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  e.  suc  (
f `  y )
) )
20 eliun 4099 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  <->  E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  e.  suc  ( f `  y
) )
2119, 20syl6bbr 256 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  ( f `  y
)  <->  x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
2221ancoms 441 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  x  e.  On )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  ( f `  y
)  <->  x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
2312, 22sylan2 462 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  x  e.  ( aleph `  suc  A ) )  ->  ( E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  (
f `  y )  <->  x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
2423ralbidva 2723 . . . . . . . . . . . . . . 15  |-  ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  ->  ( A. x  e.  ( aleph ` 
suc  A ) E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  (
f `  y )  <->  A. x  e.  ( aleph ` 
suc  A ) x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) ) )
25 dfss3 3340 . . . . . . . . . . . . . . 15  |-  ( (
aleph `  suc  A ) 
C_  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y )  <->  A. x  e.  ( aleph `  suc  A ) x  e.  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) )
2624, 25syl6bbr 256 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  ->  ( A. x  e.  ( aleph ` 
suc  A ) E. y  e.  ( cf `  ( aleph `  suc  A ) ) x  C_  (
f `  y )  <->  (
aleph `  suc  A ) 
C_  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y ) ) )
2726biimpa 472 . . . . . . . . . . . . 13  |-  ( ( f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  -> 
( aleph `  suc  A ) 
C_  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y ) )
2810, 11, 27syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  ( aleph ` 
suc  A )  C_  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) )
29 ssdomg 7155 . . . . . . . . . . . 12  |-  ( U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  e. 
_V  ->  ( ( aleph ` 
suc  A )  C_  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  -> 
( aleph `  suc  A )  ~<_ 
U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y ) ) )
308, 28, 29mpsyl 62 . . . . . . . . . . 11  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  ( aleph ` 
suc  A )  ~<_  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y ) )
31 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  A  e.  On )
32 suceloni 4795 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  suc  A  e.  On )
33 alephislim 7966 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
A  e.  On  <->  Lim  ( aleph ` 
suc  A ) )
34 limsuc 4831 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  ( aleph `  suc  A )  ->  ( ( f `
 y )  e.  ( aleph `  suc  A )  <->  suc  ( f `  y
)  e.  ( aleph ` 
suc  A ) ) )
3533, 34sylbi 189 . . . . . . . . . . . . . . . . . 18  |-  ( suc 
A  e.  On  ->  ( ( f `  y
)  e.  ( aleph ` 
suc  A )  <->  suc  ( f `
 y )  e.  ( aleph `  suc  A ) ) )
3632, 35syl 16 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  On  ->  (
( f `  y
)  e.  ( aleph ` 
suc  A )  <->  suc  ( f `
 y )  e.  ( aleph `  suc  A ) ) )
37 breq1 4217 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  suc  ( f `
 y )  -> 
( z  ~<  ( aleph `  suc  A )  <->  suc  ( f `  y
)  ~<  ( aleph `  suc  A ) ) )
38 alephcard 7953 . . . . . . . . . . . . . . . . . . . 20  |-  ( card `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )
39 iscard 7864 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
card `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A )  <-> 
( ( aleph `  suc  A )  e.  On  /\  A. z  e.  ( aleph ` 
suc  A ) z 
~<  ( aleph `  suc  A ) ) )
4039simprbi 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A )  ->  A. z  e.  (
aleph `  suc  A ) z  ~<  ( aleph ` 
suc  A ) )
4138, 40ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  A. z  e.  ( aleph `  suc  A ) z  ~<  ( aleph ` 
suc  A )
4237, 41vtoclri 3028 . . . . . . . . . . . . . . . . . 18  |-  ( suc  ( f `  y
)  e.  ( aleph ` 
suc  A )  ->  suc  ( f `  y
)  ~<  ( aleph `  suc  A ) )
43 alephsucdom 7962 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  ( suc  ( f `  y
)  ~<_  ( aleph `  A
)  <->  suc  ( f `  y )  ~<  ( aleph `  suc  A ) ) )
4442, 43syl5ibr 214 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  On  ->  ( suc  ( f `  y
)  e.  ( aleph ` 
suc  A )  ->  suc  ( f `  y
)  ~<_  ( aleph `  A
) ) )
4536, 44sylbid 208 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  ->  (
( f `  y
)  e.  ( aleph ` 
suc  A )  ->  suc  ( f `  y
)  ~<_  ( aleph `  A
) ) )
4613, 45syl5 31 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  (
( f : ( cf `  ( aleph ` 
suc  A ) ) --> ( aleph `  suc  A )  /\  y  e.  ( cf `  ( aleph ` 
suc  A ) ) )  ->  suc  ( f `
 y )  ~<_  (
aleph `  A ) ) )
4746expdimp 428 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  (
y  e.  ( cf `  ( aleph `  suc  A ) )  ->  suc  ( f `
 y )  ~<_  (
aleph `  A ) ) )
4847ralrimiv 2790 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  A. y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  (
aleph `  A ) )
49 iundom 8419 . . . . . . . . . . . . 13  |-  ( ( ( cf `  ( aleph `  suc  A ) )  e.  _V  /\  A. y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  (
aleph `  A ) )  ->  U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y )  ~<_  ( ( cf `  ( aleph ` 
suc  A ) )  X.  ( aleph `  A
) ) )
505, 48, 49sylancr 646 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  f : ( cf `  ( aleph `  suc  A ) ) --> ( aleph `  suc  A ) )  ->  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
5131, 10, 50syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
52 domtr 7162 . . . . . . . . . . 11  |-  ( ( ( aleph `  suc  A )  ~<_ 
U_ y  e.  ( cf `  ( aleph ` 
suc  A ) ) suc  ( f `  y )  /\  U_ y  e.  ( cf `  ( aleph `  suc  A ) ) suc  ( f `
 y )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )  ->  ( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
5330, 51, 52syl2anc 644 . . . . . . . . . 10  |-  ( ( ( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  /\  ( A  e.  On  /\  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A ) ) )  ->  ( aleph ` 
suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
5453expcom 426 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  (
( f : ( cf `  ( aleph ` 
suc  A ) )
-1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  -> 
( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) ) )
5554exlimdv 1647 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  ( E. f ( f : ( cf `  ( aleph `  suc  A ) ) -1-1-> ( aleph `  suc  A )  /\  A. x  e.  ( aleph `  suc  A ) E. y  e.  ( cf `  ( aleph ` 
suc  A ) ) x  C_  ( f `  y ) )  -> 
( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) ) )
564, 55mpi 17 . . . . . . 7  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  ( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) ) )
57 alephgeom 7965 . . . . . . . . . 10  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
58 alephon 7952 . . . . . . . . . . 11  |-  ( aleph `  A )  e.  On
59 infxpen 7898 . . . . . . . . . . 11  |-  ( ( ( aleph `  A )  e.  On  /\  om  C_  ( aleph `  A ) )  ->  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )
6058, 59mpan 653 . . . . . . . . . 10  |-  ( om  C_  ( aleph `  A )  ->  ( ( aleph `  A
)  X.  ( aleph `  A ) )  ~~  ( aleph `  A )
)
6157, 60sylbi 189 . . . . . . . . 9  |-  ( A  e.  On  ->  (
( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )
62 breq1 4217 . . . . . . . . . . . 12  |-  ( z  =  ( cf `  ( aleph `  suc  A ) )  ->  ( z  ~<  ( aleph `  suc  A )  <-> 
( cf `  ( aleph `  suc  A ) )  ~<  ( aleph ` 
suc  A ) ) )
6362, 41vtoclri 3028 . . . . . . . . . . 11  |-  ( ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A )  ->  ( cf `  ( aleph `  suc  A ) )  ~<  ( aleph ` 
suc  A ) )
64 alephsucdom 7962 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  ~<_  ( aleph `  A
)  <->  ( cf `  ( aleph `  suc  A ) )  ~<  ( aleph ` 
suc  A ) ) )
6563, 64syl5ibr 214 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( cf `  ( aleph `  suc  A ) )  ~<_  ( aleph `  A
) ) )
66 fvex 5744 . . . . . . . . . . 11  |-  ( aleph `  A )  e.  _V
6766xpdom1 7209 . . . . . . . . . 10  |-  ( ( cf `  ( aleph ` 
suc  A ) )  ~<_  ( aleph `  A )  ->  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
) )
6865, 67syl6 32 . . . . . . . . 9  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
) ) )
69 domentr 7168 . . . . . . . . . 10  |-  ( ( ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
)  /\  ( ( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )  -> 
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) )
7069expcom 426 . . . . . . . . 9  |-  ( ( ( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A )  ->  (
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A )
)  ->  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  ( aleph `  A )
) )
7161, 68, 70sylsyld 55 . . . . . . . 8  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) ) )
7271imp 420 . . . . . . 7  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  (
( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) )
73 domtr 7162 . . . . . . 7  |-  ( ( ( aleph `  suc  A )  ~<_  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  /\  ( ( cf `  ( aleph `  suc  A ) )  X.  ( aleph `  A ) )  ~<_  (
aleph `  A ) )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  A
) )
7456, 72, 73syl2anc 644 . . . . . 6  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  A )
)
75 domnsym 7235 . . . . . 6  |-  ( (
aleph `  suc  A )  ~<_  ( aleph `  A )  ->  -.  ( aleph `  A
)  ~<  ( aleph `  suc  A ) )
7674, 75syl 16 . . . . 5  |-  ( ( A  e.  On  /\  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )  ->  -.  ( aleph `  A )  ~<  ( aleph `  suc  A ) )
7776ex 425 . . . 4  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  ->  -.  ( aleph `  A )  ~<  ( aleph `  suc  A ) ) )
781, 77mt2d 112 . . 3  |-  ( A  e.  On  ->  -.  ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A ) )
79 cfon 8137 . . . . 5  |-  ( cf `  ( aleph `  suc  A ) )  e.  On
80 cfle 8136 . . . . . 6  |-  ( cf `  ( aleph `  suc  A ) )  C_  ( aleph ` 
suc  A )
81 onsseleq 4624 . . . . . 6  |-  ( ( ( cf `  ( aleph `  suc  A ) )  e.  On  /\  ( aleph `  suc  A )  e.  On )  -> 
( ( cf `  ( aleph `  suc  A ) )  C_  ( aleph ` 
suc  A )  <->  ( ( cf `  ( aleph `  suc  A ) )  e.  (
aleph `  suc  A )  \/  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) ) ) )
8280, 81mpbii 204 . . . . 5  |-  ( ( ( cf `  ( aleph `  suc  A ) )  e.  On  /\  ( aleph `  suc  A )  e.  On )  -> 
( ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  \/  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) ) )
8379, 2, 82mp2an 655 . . . 4  |-  ( ( cf `  ( aleph ` 
suc  A ) )  e.  ( aleph `  suc  A )  \/  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) )
8483ori 366 . . 3  |-  ( -.  ( cf `  ( aleph `  suc  A ) )  e.  ( aleph ` 
suc  A )  -> 
( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A ) )
8578, 84syl 16 . 2  |-  ( A  e.  On  ->  ( cf `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A ) )
86 cf0 8133 . . 3  |-  ( cf `  (/) )  =  (/)
87 alephfnon 7948 . . . . . . . 8  |-  aleph  Fn  On
88 fndm 5546 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
8987, 88ax-mp 8 . . . . . . 7  |-  dom  aleph  =  On
9089eleq2i 2502 . . . . . 6  |-  ( suc 
A  e.  dom  aleph  <->  suc  A  e.  On )
91 sucelon 4799 . . . . . 6  |-  ( A  e.  On  <->  suc  A  e.  On )
9290, 91bitr4i 245 . . . . 5  |-  ( suc 
A  e.  dom  aleph  <->  A  e.  On )
93 ndmfv 5757 . . . . 5  |-  ( -. 
suc  A  e.  dom  aleph  ->  ( aleph `  suc  A )  =  (/) )
9492, 93sylnbir 300 . . . 4  |-  ( -.  A  e.  On  ->  (
aleph `  suc  A )  =  (/) )
9594fveq2d 5734 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  ( aleph ` 
suc  A ) )  =  ( cf `  (/) ) )
9686, 95, 943eqtr4a 2496 . 2  |-  ( -.  A  e.  On  ->  ( cf `  ( aleph ` 
suc  A ) )  =  ( aleph `  suc  A ) )
9785, 96pm2.61i 159 1  |-  ( cf `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    \/ wo 359    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958    C_ wss 3322   (/)c0 3630   U_ciun 4095   class class class wbr 4214   Oncon0 4583   Lim wlim 4584   suc csuc 4585   omcom 4847    X. cxp 4878   dom cdm 4880    Fn wfn 5451   -->wf 5452   -1-1->wf1 5453   ` cfv 5456    ~~ cen 7108    ~<_ cdom 7109    ~< csdm 7110   cardccrd 7824   alephcale 7825   cfccf 7826
This theorem is referenced by:  pwcfsdom  8460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-ac2 8345
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-oi 7481  df-har 7528  df-card 7828  df-aleph 7829  df-cf 7830  df-acn 7831  df-ac 7999
  Copyright terms: Public domain W3C validator