MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Unicode version

Theorem alephsing 7918
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if  ( aleph `  A )  <  A, then  ( aleph `  A
) is singular. Conversely, if  ( aleph `  A ) is regular (i.e. weakly inaccessible), then  ( aleph `  A )  =  A, so  A has to be rather large (see alephfp 7751). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )

Proof of Theorem alephsing
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 7708 . . . . . . 7  |-  aleph  Fn  On
2 fnfun 5357 . . . . . . 7  |-  ( aleph  Fn  On  ->  Fun  aleph )
31, 2ax-mp 8 . . . . . 6  |-  Fun  aleph
4 simpl 443 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  _V )
5 resfunexg 5753 . . . . . 6  |-  ( ( Fun  aleph  /\  A  e.  _V )  ->  ( aleph  |`  A )  e.  _V )
63, 4, 5sylancr 644 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  e. 
_V )
7 limelon 4471 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
8 onss 4598 . . . . . . . 8  |-  ( A  e.  On  ->  A  C_  On )
97, 8syl 15 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  C_  On )
10 fnssres 5373 . . . . . . 7  |-  ( (
aleph  Fn  On  /\  A  C_  On )  ->  ( aleph 
|`  A )  Fn  A )
111, 9, 10sylancr 644 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  Fn  A )
12 fvres 5558 . . . . . . . . . . 11  |-  ( y  e.  A  ->  (
( aleph  |`  A ) `  y )  =  (
aleph `  y ) )
1312adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  =  ( aleph `  y )
)
14 alephord2i 7720 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
1514imp 418 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
1613, 15eqeltrd 2370 . . . . . . . . 9  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
177, 16sylan 457 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
1817ralrimiva 2639 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )
19 fnfvrnss 5703 . . . . . . 7  |-  ( ( ( aleph  |`  A )  Fn  A  /\  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A ) )
2011, 18, 19syl2anc 642 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A )
)
21 df-f 5275 . . . . . 6  |-  ( (
aleph  |`  A ) : A --> ( aleph `  A
)  <->  ( ( aleph  |`  A )  Fn  A  /\  ran  ( aleph  |`  A ) 
C_  ( aleph `  A
) ) )
2211, 20, 21sylanbrc 645 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A ) : A --> ( aleph `  A
) )
23 alephsmo 7745 . . . . . 6  |-  Smo  aleph
24 fndm 5359 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
251, 24ax-mp 8 . . . . . . 7  |-  dom  aleph  =  On
267, 25syl6eleqr 2387 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  dom  aleph )
27 smores 6385 . . . . . 6  |-  ( ( Smo  aleph  /\  A  e.  dom  aleph )  ->  Smo  ( aleph  |`  A ) )
2823, 26, 27sylancr 644 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  Smo  ( aleph  |`  A ) )
29 alephlim 7710 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
3029eleq2d 2363 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  <->  x  e.  U_ y  e.  A  (
aleph `  y ) ) )
31 eliun 3925 . . . . . . . 8  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  x  e.  ( aleph `  y ) )
32 alephon 7712 . . . . . . . . . 10  |-  ( aleph `  y )  e.  On
3332onelssi 4517 . . . . . . . . 9  |-  ( x  e.  ( aleph `  y
)  ->  x  C_  ( aleph `  y ) )
3433reximi 2663 . . . . . . . 8  |-  ( E. y  e.  A  x  e.  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3531, 34sylbi 187 . . . . . . 7  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3630, 35syl6bi 219 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  ->  E. y  e.  A  x  C_  ( aleph `  y ) ) )
3736ralrimiv 2638 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) )
38 feq1 5391 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( f : A --> ( aleph `  A
)  <->  ( aleph  |`  A ) : A --> ( aleph `  A ) ) )
39 smoeq 6383 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( Smo  f  <->  Smo  ( aleph  |`  A ) ) )
40 fveq1 5540 . . . . . . . . . . . 12  |-  ( f  =  ( aleph  |`  A )  ->  ( f `  y )  =  ( ( aleph  |`  A ) `  y ) )
4140, 12sylan9eq 2348 . . . . . . . . . . 11  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
f `  y )  =  ( aleph `  y
) )
4241sseq2d 3219 . . . . . . . . . 10  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
x  C_  ( f `  y )  <->  x  C_  ( aleph `  y ) ) )
4342rexbidva 2573 . . . . . . . . 9  |-  ( f  =  ( aleph  |`  A )  ->  ( E. y  e.  A  x  C_  (
f `  y )  <->  E. y  e.  A  x 
C_  ( aleph `  y
) ) )
4443ralbidv 2576 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y )  <->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) ) )
4538, 39, 443anbi123d 1252 . . . . . . 7  |-  ( f  =  ( aleph  |`  A )  ->  ( ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) )  <->  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) ) )
4645spcegv 2882 . . . . . 6  |-  ( (
aleph  |`  A )  e. 
_V  ->  ( ( (
aleph  |`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) )  ->  E. f ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) ) ) )
4746imp 418 . . . . 5  |-  ( ( ( aleph  |`  A )  e. 
_V  /\  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
486, 22, 28, 37, 47syl13anc 1184 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
49 alephon 7712 . . . . 5  |-  ( aleph `  A )  e.  On
50 cfcof 7916 . . . . 5  |-  ( ( ( aleph `  A )  e.  On  /\  A  e.  On )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5149, 7, 50sylancr 644 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5248, 51mpd 14 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( cf `  ( aleph `  A
) )  =  ( cf `  A ) )
5352expcom 424 . 2  |-  ( Lim 
A  ->  ( A  e.  _V  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
54 cf0 7893 . . 3  |-  ( cf `  (/) )  =  (/)
55 fvprc 5535 . . . 4  |-  ( -.  A  e.  _V  ->  (
aleph `  A )  =  (/) )
5655fveq2d 5545 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
57 fvprc 5535 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  A )  =  (/) )
5854, 56, 573eqtr4a 2354 . 2  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  A
) )
5953, 58pm2.61d1 151 1  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   U_ciun 3921   Oncon0 4408   Lim wlim 4409   dom cdm 4705   ran crn 4706    |` cres 4707   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271   Smo wsmo 6378   alephcale 7585   cfccf 7586
This theorem is referenced by:  alephom  8223  winafp  8335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-smo 6379  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589  df-cf 7590  df-acn 7591
  Copyright terms: Public domain W3C validator