MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Unicode version

Theorem alephval2 8190
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
Distinct variable group:    x, y, A
Dummy variable  z is distinct from all other variables.

Proof of Theorem alephval2
StepHypRef Expression
1 alephordi 7697 . . . . . 6  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  ~<  ( aleph `  A )
) )
21ralrimiv 2627 . . . . 5  |-  ( A  e.  On  ->  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) )
3 alephon 7692 . . . . 5  |-  ( aleph `  A )  e.  On
42, 3jctil 525 . . . 4  |-  ( A  e.  On  ->  (
( aleph `  A )  e.  On  /\  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) ) )
5 breq2 4029 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( ( aleph `  y )  ~<  x 
<->  ( aleph `  y )  ~<  ( aleph `  A )
) )
65ralbidv 2565 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( A. y  e.  A  ( aleph `  y )  ~<  x 
<-> 
A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A )
) )
76elrab 2925 . . . 4  |-  ( (
aleph `  A )  e. 
{ x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  <->  ( ( aleph `  A )  e.  On  /\  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) ) )
84, 7sylibr 205 . . 3  |-  ( A  e.  On  ->  ( aleph `  A )  e. 
{ x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
98adantr 453 . 2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
10 cardsdomelir 7602 . . . . 5  |-  ( z  e.  ( card `  ( aleph `  A ) )  ->  z  ~<  ( aleph `  A ) )
11 alephcard 7693 . . . . . 6  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
1211eqcomi 2289 . . . . 5  |-  ( aleph `  A )  =  (
card `  ( aleph `  A
) )
1310, 12eleq2s 2377 . . . 4  |-  ( z  e.  ( aleph `  A
)  ->  z  ~<  (
aleph `  A ) )
14 omex 7340 . . . . . 6  |-  om  e.  _V
15 vex 2793 . . . . . 6  |-  z  e. 
_V
16 entri3 8177 . . . . . 6  |-  ( ( om  e.  _V  /\  z  e.  _V )  ->  ( om  ~<_  z  \/  z  ~<_  om ) )
1714, 15, 16mp2an 655 . . . . 5  |-  ( om  ~<_  z  \/  z  ~<_  om )
18 carddom 8172 . . . . . . . . . 10  |-  ( ( om  e.  _V  /\  z  e.  _V )  ->  ( ( card `  om )  C_  ( card `  z
)  <->  om  ~<_  z ) )
1914, 15, 18mp2an 655 . . . . . . . . 9  |-  ( (
card `  om )  C_  ( card `  z )  <->  om  ~<_  z )
20 cardom 7615 . . . . . . . . . 10  |-  ( card `  om )  =  om
2120sseq1i 3204 . . . . . . . . 9  |-  ( (
card `  om )  C_  ( card `  z )  <->  om  C_  ( card `  z
) )
2219, 21bitr3i 244 . . . . . . . 8  |-  ( om  ~<_  z  <->  om  C_  ( card `  z ) )
23 cardidm 7588 . . . . . . . . . 10  |-  ( card `  ( card `  z
) )  =  (
card `  z )
24 cardalephex 7713 . . . . . . . . . 10  |-  ( om  C_  ( card `  z
)  ->  ( ( card `  ( card `  z
) )  =  (
card `  z )  <->  E. x  e.  On  ( card `  z )  =  ( aleph `  x )
) )
2523, 24mpbii 204 . . . . . . . . 9  |-  ( om  C_  ( card `  z
)  ->  E. x  e.  On  ( card `  z
)  =  ( aleph `  x ) )
26 alephord 7698 . . . . . . . . . . . . . 14  |-  ( ( x  e.  On  /\  A  e.  On )  ->  ( x  e.  A  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
2726ancoms 441 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( x  e.  A  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
2815cardid 8165 . . . . . . . . . . . . . . 15  |-  ( card `  z )  ~~  z
29 sdomen1 7001 . . . . . . . . . . . . . . 15  |-  ( (
card `  z )  ~~  z  ->  ( (
card `  z )  ~<  ( aleph `  A )  <->  z 
~<  ( aleph `  A )
) )
3028, 29ax-mp 10 . . . . . . . . . . . . . 14  |-  ( (
card `  z )  ~<  ( aleph `  A )  <->  z 
~<  ( aleph `  A )
)
31 breq1 4028 . . . . . . . . . . . . . 14  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( card `  z )  ~< 
( aleph `  A )  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
3230, 31syl5rbbr 253 . . . . . . . . . . . . 13  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
( aleph `  A )  <->  z 
~<  ( aleph `  A )
) )
3327, 32sylan9bb 682 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( x  e.  A  <->  z 
~<  ( aleph `  A )
) )
34 fveq2 5486 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  ( aleph `  y )  =  ( aleph `  x )
)
3534breq1d 4035 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
( aleph `  y )  ~<  z  <->  ( aleph `  x
)  ~<  z ) )
3635rspcv 2882 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  ->  ( A. y  e.  A  ( aleph `  y )  ~<  z  ->  ( aleph `  x )  ~<  z
) )
37 sdomirr 6994 . . . . . . . . . . . . . . . 16  |-  -.  ( aleph `  x )  ~< 
( aleph `  x )
38 sdomen2 7002 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  z )  ~~  z  ->  ( (
aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
z ) )
3928, 38ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
z )
40 breq2 4029 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
( aleph `  x )
) )
4139, 40syl5bbr 252 . . . . . . . . . . . . . . . 16  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
z  <->  ( aleph `  x
)  ~<  ( aleph `  x
) ) )
4237, 41mtbiri 296 . . . . . . . . . . . . . . 15  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  -.  ( aleph `  x )  ~< 
z )
4336, 42nsyli 135 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  (
( card `  z )  =  ( aleph `  x
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) )
4443com12 29 . . . . . . . . . . . . 13  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( x  e.  A  ->  -.  A. y  e.  A  ( aleph `  y )  ~< 
z ) )
4544adantl 454 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( x  e.  A  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) )
4633, 45sylbird 228 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) )
4746exp31 589 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( card `  z
)  =  ( aleph `  x )  ->  (
z  ~<  ( aleph `  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) ) )
4847rexlimdv 2668 . . . . . . . . 9  |-  ( A  e.  On  ->  ( E. x  e.  On  ( card `  z )  =  ( aleph `  x
)  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
4925, 48syl5 30 . . . . . . . 8  |-  ( A  e.  On  ->  ( om  C_  ( card `  z
)  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
5022, 49syl5bi 210 . . . . . . 7  |-  ( A  e.  On  ->  ( om 
~<_  z  ->  ( z 
~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
5150adantr 453 . . . . . 6  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( om  ~<_  z  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) ) )
52 ne0i 3463 . . . . . . . . . . . 12  |-  ( (/)  e.  A  ->  A  =/=  (/) )
53 onelon 4417 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  y  e.  A )  ->  y  e.  On )
54 alephgeom 7705 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  <->  om  C_  ( aleph `  y ) )
55 alephon 7692 . . . . . . . . . . . . . . . . . . 19  |-  ( aleph `  y )  e.  On
56 ssdomg 6903 . . . . . . . . . . . . . . . . . . 19  |-  ( (
aleph `  y )  e.  On  ->  ( om  C_  ( aleph `  y )  ->  om  ~<_  ( aleph `  y
) ) )
5755, 56ax-mp 10 . . . . . . . . . . . . . . . . . 18  |-  ( om  C_  ( aleph `  y )  ->  om  ~<_  ( aleph `  y
) )
5854, 57sylbi 189 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  On  ->  om  ~<_  ( aleph `  y ) )
59 domtr 6910 . . . . . . . . . . . . . . . . 17  |-  ( ( z  ~<_  om  /\  om  ~<_  ( aleph `  y ) )  -> 
z  ~<_  ( aleph `  y
) )
6058, 59sylan2 462 . . . . . . . . . . . . . . . 16  |-  ( ( z  ~<_  om  /\  y  e.  On )  ->  z  ~<_  ( aleph `  y )
)
61 domnsym 6983 . . . . . . . . . . . . . . . 16  |-  ( z  ~<_  ( aleph `  y )  ->  -.  ( aleph `  y
)  ~<  z )
6260, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( ( z  ~<_  om  /\  y  e.  On )  ->  -.  ( aleph `  y )  ~<  z )
6353, 62sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( z  ~<_  om  /\  ( A  e.  On  /\  y  e.  A ) )  ->  -.  ( aleph `  y )  ~<  z )
6463expr 600 . . . . . . . . . . . . 13  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  (
y  e.  A  ->  -.  ( aleph `  y )  ~<  z ) )
6564ralrimiv 2627 . . . . . . . . . . . 12  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  A. y  e.  A  -.  ( aleph `  y )  ~< 
z )
66 r19.2z 3545 . . . . . . . . . . . . 13  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  -.  ( aleph `  y )  ~<  z )  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z )
6766ex 425 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  -.  ( aleph `  y )  ~<  z  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z ) )
6852, 65, 67syl2im 36 . . . . . . . . . . 11  |-  ( (/)  e.  A  ->  ( ( z  ~<_  om  /\  A  e.  On )  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z ) )
69 rexnal 2556 . . . . . . . . . . 11  |-  ( E. y  e.  A  -.  ( aleph `  y )  ~<  z  <->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
)
7068, 69syl6ib 219 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  ( ( z  ~<_  om  /\  A  e.  On )  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) )
7170com12 29 . . . . . . . . 9  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  ( (/) 
e.  A  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) )
7271expimpd 588 . . . . . . . 8  |-  ( z  ~<_  om  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) )
7372a1d 24 . . . . . . 7  |-  ( z  ~<_  om  ->  ( z  ~<  ( aleph `  A )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) )
7473com3r 75 . . . . . 6  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  ~<_  om  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) ) )
7551, 74jaod 371 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( ( om  ~<_  z  \/  z  ~<_  om )  ->  (
z  ~<  ( aleph `  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) )
7617, 75mpi 18 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) )
77 breq2 4029 . . . . . . . 8  |-  ( x  =  z  ->  (
( aleph `  y )  ~<  x  <->  ( aleph `  y
)  ~<  z ) )
7877ralbidv 2565 . . . . . . 7  |-  ( x  =  z  ->  ( A. y  e.  A  ( aleph `  y )  ~<  x  <->  A. y  e.  A  ( aleph `  y )  ~<  z ) )
7978elrab 2925 . . . . . 6  |-  ( z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } 
<->  ( z  e.  On  /\ 
A. y  e.  A  ( aleph `  y )  ~<  z ) )
8079simprbi 452 . . . . 5  |-  ( z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  ->  A. y  e.  A  ( aleph `  y )  ~<  z )
8180con3i 129 . . . 4  |-  ( -. 
A. y  e.  A  ( aleph `  y )  ~<  z  ->  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
8213, 76, 81syl56 32 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  e.  (
aleph `  A )  ->  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } ) )
8382ralrimiv 2627 . 2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  ->  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
84 ssrab2 3260 . . 3  |-  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  C_  On
85 oneqmini 4443 . . 3  |-  ( { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  C_  On  ->  ( ( ( aleph `  A )  e.  {
x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } ) )
8684, 85ax-mp 10 . 2  |-  ( ( ( aleph `  A )  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
879, 83, 86syl2anc 644 1  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   E.wrex 2546   {crab 2549   _Vcvv 2790    C_ wss 3154   (/)c0 3457   |^|cint 3864   class class class wbr 4025   Oncon0 4392   omcom 4656   ` cfv 5222    ~~ cen 6856    ~<_ cdom 6857    ~< csdm 6858   cardccrd 7564   alephcale 7565
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-ac2 8085
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-oi 7221  df-har 7268  df-card 7568  df-aleph 7569  df-ac 7739
  Copyright terms: Public domain W3C validator