MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Unicode version

Theorem alephval2 8210
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
Distinct variable group:    x, y, A

Proof of Theorem alephval2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 alephordi 7717 . . . . . 6  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  ~<  ( aleph `  A )
) )
21ralrimiv 2638 . . . . 5  |-  ( A  e.  On  ->  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) )
3 alephon 7712 . . . . 5  |-  ( aleph `  A )  e.  On
42, 3jctil 523 . . . 4  |-  ( A  e.  On  ->  (
( aleph `  A )  e.  On  /\  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) ) )
5 breq2 4043 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( ( aleph `  y )  ~<  x 
<->  ( aleph `  y )  ~<  ( aleph `  A )
) )
65ralbidv 2576 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( A. y  e.  A  ( aleph `  y )  ~<  x 
<-> 
A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A )
) )
76elrab 2936 . . . 4  |-  ( (
aleph `  A )  e. 
{ x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  <->  ( ( aleph `  A )  e.  On  /\  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) ) )
84, 7sylibr 203 . . 3  |-  ( A  e.  On  ->  ( aleph `  A )  e. 
{ x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
98adantr 451 . 2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
10 cardsdomelir 7622 . . . . 5  |-  ( z  e.  ( card `  ( aleph `  A ) )  ->  z  ~<  ( aleph `  A ) )
11 alephcard 7713 . . . . . 6  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
1211eqcomi 2300 . . . . 5  |-  ( aleph `  A )  =  (
card `  ( aleph `  A
) )
1310, 12eleq2s 2388 . . . 4  |-  ( z  e.  ( aleph `  A
)  ->  z  ~<  (
aleph `  A ) )
14 omex 7360 . . . . . 6  |-  om  e.  _V
15 vex 2804 . . . . . 6  |-  z  e. 
_V
16 entri3 8197 . . . . . 6  |-  ( ( om  e.  _V  /\  z  e.  _V )  ->  ( om  ~<_  z  \/  z  ~<_  om ) )
1714, 15, 16mp2an 653 . . . . 5  |-  ( om  ~<_  z  \/  z  ~<_  om )
18 carddom 8192 . . . . . . . . . 10  |-  ( ( om  e.  _V  /\  z  e.  _V )  ->  ( ( card `  om )  C_  ( card `  z
)  <->  om  ~<_  z ) )
1914, 15, 18mp2an 653 . . . . . . . . 9  |-  ( (
card `  om )  C_  ( card `  z )  <->  om  ~<_  z )
20 cardom 7635 . . . . . . . . . 10  |-  ( card `  om )  =  om
2120sseq1i 3215 . . . . . . . . 9  |-  ( (
card `  om )  C_  ( card `  z )  <->  om  C_  ( card `  z
) )
2219, 21bitr3i 242 . . . . . . . 8  |-  ( om  ~<_  z  <->  om  C_  ( card `  z ) )
23 cardidm 7608 . . . . . . . . . 10  |-  ( card `  ( card `  z
) )  =  (
card `  z )
24 cardalephex 7733 . . . . . . . . . 10  |-  ( om  C_  ( card `  z
)  ->  ( ( card `  ( card `  z
) )  =  (
card `  z )  <->  E. x  e.  On  ( card `  z )  =  ( aleph `  x )
) )
2523, 24mpbii 202 . . . . . . . . 9  |-  ( om  C_  ( card `  z
)  ->  E. x  e.  On  ( card `  z
)  =  ( aleph `  x ) )
26 alephord 7718 . . . . . . . . . . . . . 14  |-  ( ( x  e.  On  /\  A  e.  On )  ->  ( x  e.  A  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
2726ancoms 439 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( x  e.  A  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
2815cardid 8185 . . . . . . . . . . . . . . 15  |-  ( card `  z )  ~~  z
29 sdomen1 7021 . . . . . . . . . . . . . . 15  |-  ( (
card `  z )  ~~  z  ->  ( (
card `  z )  ~<  ( aleph `  A )  <->  z 
~<  ( aleph `  A )
) )
3028, 29ax-mp 8 . . . . . . . . . . . . . 14  |-  ( (
card `  z )  ~<  ( aleph `  A )  <->  z 
~<  ( aleph `  A )
)
31 breq1 4042 . . . . . . . . . . . . . 14  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( card `  z )  ~< 
( aleph `  A )  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
3230, 31syl5rbbr 251 . . . . . . . . . . . . 13  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
( aleph `  A )  <->  z 
~<  ( aleph `  A )
) )
3327, 32sylan9bb 680 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( x  e.  A  <->  z 
~<  ( aleph `  A )
) )
34 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  ( aleph `  y )  =  ( aleph `  x )
)
3534breq1d 4049 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
( aleph `  y )  ~<  z  <->  ( aleph `  x
)  ~<  z ) )
3635rspcv 2893 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  ->  ( A. y  e.  A  ( aleph `  y )  ~<  z  ->  ( aleph `  x )  ~<  z
) )
37 sdomirr 7014 . . . . . . . . . . . . . . . 16  |-  -.  ( aleph `  x )  ~< 
( aleph `  x )
38 sdomen2 7022 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  z )  ~~  z  ->  ( (
aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
z ) )
3928, 38ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
z )
40 breq2 4043 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
( aleph `  x )
) )
4139, 40syl5bbr 250 . . . . . . . . . . . . . . . 16  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
z  <->  ( aleph `  x
)  ~<  ( aleph `  x
) ) )
4237, 41mtbiri 294 . . . . . . . . . . . . . . 15  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  -.  ( aleph `  x )  ~< 
z )
4336, 42nsyli 133 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  (
( card `  z )  =  ( aleph `  x
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) )
4443com12 27 . . . . . . . . . . . . 13  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( x  e.  A  ->  -.  A. y  e.  A  ( aleph `  y )  ~< 
z ) )
4544adantl 452 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( x  e.  A  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) )
4633, 45sylbird 226 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) )
4746exp31 587 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( card `  z
)  =  ( aleph `  x )  ->  (
z  ~<  ( aleph `  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) ) )
4847rexlimdv 2679 . . . . . . . . 9  |-  ( A  e.  On  ->  ( E. x  e.  On  ( card `  z )  =  ( aleph `  x
)  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
4925, 48syl5 28 . . . . . . . 8  |-  ( A  e.  On  ->  ( om  C_  ( card `  z
)  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
5022, 49syl5bi 208 . . . . . . 7  |-  ( A  e.  On  ->  ( om 
~<_  z  ->  ( z 
~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
5150adantr 451 . . . . . 6  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( om  ~<_  z  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) ) )
52 ne0i 3474 . . . . . . . . . . . 12  |-  ( (/)  e.  A  ->  A  =/=  (/) )
53 onelon 4433 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  y  e.  A )  ->  y  e.  On )
54 alephgeom 7725 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  <->  om  C_  ( aleph `  y ) )
55 alephon 7712 . . . . . . . . . . . . . . . . . . 19  |-  ( aleph `  y )  e.  On
56 ssdomg 6923 . . . . . . . . . . . . . . . . . . 19  |-  ( (
aleph `  y )  e.  On  ->  ( om  C_  ( aleph `  y )  ->  om  ~<_  ( aleph `  y
) ) )
5755, 56ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( om  C_  ( aleph `  y )  ->  om  ~<_  ( aleph `  y
) )
5854, 57sylbi 187 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  On  ->  om  ~<_  ( aleph `  y ) )
59 domtr 6930 . . . . . . . . . . . . . . . . 17  |-  ( ( z  ~<_  om  /\  om  ~<_  ( aleph `  y ) )  -> 
z  ~<_  ( aleph `  y
) )
6058, 59sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( z  ~<_  om  /\  y  e.  On )  ->  z  ~<_  ( aleph `  y )
)
61 domnsym 7003 . . . . . . . . . . . . . . . 16  |-  ( z  ~<_  ( aleph `  y )  ->  -.  ( aleph `  y
)  ~<  z )
6260, 61syl 15 . . . . . . . . . . . . . . 15  |-  ( ( z  ~<_  om  /\  y  e.  On )  ->  -.  ( aleph `  y )  ~<  z )
6353, 62sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( z  ~<_  om  /\  ( A  e.  On  /\  y  e.  A ) )  ->  -.  ( aleph `  y )  ~<  z )
6463expr 598 . . . . . . . . . . . . 13  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  (
y  e.  A  ->  -.  ( aleph `  y )  ~<  z ) )
6564ralrimiv 2638 . . . . . . . . . . . 12  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  A. y  e.  A  -.  ( aleph `  y )  ~< 
z )
66 r19.2z 3556 . . . . . . . . . . . . 13  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  -.  ( aleph `  y )  ~<  z )  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z )
6766ex 423 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  -.  ( aleph `  y )  ~<  z  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z ) )
6852, 65, 67syl2im 34 . . . . . . . . . . 11  |-  ( (/)  e.  A  ->  ( ( z  ~<_  om  /\  A  e.  On )  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z ) )
69 rexnal 2567 . . . . . . . . . . 11  |-  ( E. y  e.  A  -.  ( aleph `  y )  ~<  z  <->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
)
7068, 69syl6ib 217 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  ( ( z  ~<_  om  /\  A  e.  On )  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) )
7170com12 27 . . . . . . . . 9  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  ( (/) 
e.  A  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) )
7271expimpd 586 . . . . . . . 8  |-  ( z  ~<_  om  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) )
7372a1d 22 . . . . . . 7  |-  ( z  ~<_  om  ->  ( z  ~<  ( aleph `  A )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) )
7473com3r 73 . . . . . 6  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  ~<_  om  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) ) )
7551, 74jaod 369 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( ( om  ~<_  z  \/  z  ~<_  om )  ->  (
z  ~<  ( aleph `  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) )
7617, 75mpi 16 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) )
77 breq2 4043 . . . . . . . 8  |-  ( x  =  z  ->  (
( aleph `  y )  ~<  x  <->  ( aleph `  y
)  ~<  z ) )
7877ralbidv 2576 . . . . . . 7  |-  ( x  =  z  ->  ( A. y  e.  A  ( aleph `  y )  ~<  x  <->  A. y  e.  A  ( aleph `  y )  ~<  z ) )
7978elrab 2936 . . . . . 6  |-  ( z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } 
<->  ( z  e.  On  /\ 
A. y  e.  A  ( aleph `  y )  ~<  z ) )
8079simprbi 450 . . . . 5  |-  ( z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  ->  A. y  e.  A  ( aleph `  y )  ~<  z )
8180con3i 127 . . . 4  |-  ( -. 
A. y  e.  A  ( aleph `  y )  ~<  z  ->  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
8213, 76, 81syl56 30 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  e.  (
aleph `  A )  ->  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } ) )
8382ralrimiv 2638 . 2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  ->  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
84 ssrab2 3271 . . 3  |-  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  C_  On
85 oneqmini 4459 . . 3  |-  ( { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  C_  On  ->  ( ( ( aleph `  A )  e.  {
x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } ) )
8684, 85ax-mp 8 . 2  |-  ( ( ( aleph `  A )  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
879, 83, 86syl2anc 642 1  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    C_ wss 3165   (/)c0 3468   |^|cint 3878   class class class wbr 4039   Oncon0 4408   omcom 4672   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584   alephcale 7585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589  df-ac 7759
  Copyright terms: Public domain W3C validator