MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alequcom-o Unicode version

Theorem alequcom-o 1837
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when  x and  y are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of alequcom 1680 using ax-10o 1835. Unlike ax10from10o 1836, this version does not require ax-17 1628. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alequcom-o  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem alequcom-o
StepHypRef Expression
1 ax-10o 1835 . . 3  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
21pm2.43i 45 . 2  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
3 equcomi-o 1823 . . 3  |-  ( x  =  y  ->  y  =  x )
43alimi 1546 . 2  |-  ( A. y  x  =  y  ->  A. y  y  =  x )
52, 4syl 17 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532
This theorem is referenced by:  alequcoms-o  1838  nalequcoms-o  1839  aev-o  1924  ax11indalem  2110
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-8 1623  ax-12o 1664  ax-9 1684  ax-4 1692  ax-10o 1835
  Copyright terms: Public domain W3C validator