MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALTlem2 Unicode version

Theorem alexsubALTlem2 18067
Description: Lemma for alexsubALT 18070. Every subset of a base which has no finite subcover is a subset of a maximal such collection. (Contributed by Jeff Hankins, 27-Jan-2010.)
Hypothesis
Ref Expression
alexsubALT.1  |-  X  = 
U. J
Assertion
Ref Expression
alexsubALTlem2  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  ->  E. u  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } ) A. v  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  -.  u  C.  v )
Distinct variable groups:    a, b,
c, d, u, v, x, z, J    X, a, b, c, d, u, v, x, z

Proof of Theorem alexsubALTlem2
Dummy variables  n  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3334 . . . . . . . . . . . . 13  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  (
w  e.  y  ->  w  e.  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } ) ) )
2 elun 3480 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  <->  ( w  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  \/  w  e.  { (/)
} ) )
3 sseq2 3362 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  w  ->  (
a  C_  z  <->  a  C_  w ) )
4 pweq 3794 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  w  ->  ~P z  =  ~P w
)
54ineq1d 3533 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  w  ->  ( ~P z  i^i  Fin )  =  ( ~P w  i^i  Fin ) )
65raleqdv 2902 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  w  ->  ( A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b 
<-> 
A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) )
73, 6anbi12d 692 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  (
( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b )  <->  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i 
Fin )  -.  X  =  U. b ) ) )
87elrab 3084 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  <->  ( w  e.  ~P ( fi `  x )  /\  (
a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) ) )
9 elsn 3821 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { (/) }  <->  w  =  (/) )
108, 9orbi12i 508 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  \/  w  e.  { (/) } )  <-> 
( ( w  e. 
~P ( fi `  x )  /\  (
a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) )  \/  w  =  (/) ) )
112, 10bitri 241 . . . . . . . . . . . . . 14  |-  ( w  e.  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  <->  ( (
w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) )  \/  w  =  (/) ) )
12 elpwi 3799 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~P ( fi
`  x )  ->  w  C_  ( fi `  x ) )
1312adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) )  ->  w  C_  ( fi `  x ) )
14 0ss 3648 . . . . . . . . . . . . . . . 16  |-  (/)  C_  ( fi `  x )
15 sseq1 3361 . . . . . . . . . . . . . . . 16  |-  ( w  =  (/)  ->  ( w 
C_  ( fi `  x )  <->  (/)  C_  ( fi `  x ) ) )
1614, 15mpbiri 225 . . . . . . . . . . . . . . 15  |-  ( w  =  (/)  ->  w  C_  ( fi `  x ) )
1713, 16jaoi 369 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i 
Fin )  -.  X  =  U. b ) )  \/  w  =  (/) )  ->  w  C_  ( fi `  x ) )
1811, 17sylbi 188 . . . . . . . . . . . . 13  |-  ( w  e.  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  w  C_  ( fi `  x
) )
191, 18syl6 31 . . . . . . . . . . . 12  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  (
w  e.  y  ->  w  C_  ( fi `  x ) ) )
2019ralrimiv 2780 . . . . . . . . . . 11  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  A. w  e.  y  w  C_  ( fi `  x ) )
21 unissb 4037 . . . . . . . . . . 11  |-  ( U. y  C_  ( fi `  x )  <->  A. w  e.  y  w  C_  ( fi `  x ) )
2220, 21sylibr 204 . . . . . . . . . 10  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  U. y  C_  ( fi `  x
) )
2322adantr 452 . . . . . . . . 9  |-  ( ( y  C_  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y )  ->  U. y  C_  ( fi `  x
) )
2423ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  U. y  C_  ( fi `  x ) )
25 vex 2951 . . . . . . . . . 10  |-  y  e. 
_V
2625uniex 4696 . . . . . . . . 9  |-  U. y  e.  _V
2726elpw 3797 . . . . . . . 8  |-  ( U. y  e.  ~P ( fi `  x )  <->  U. y  C_  ( fi `  x
) )
2824, 27sylibr 204 . . . . . . 7  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  U. y  e.  ~P ( fi `  x ) )
29 uni0b 4032 . . . . . . . . . 10  |-  ( U. y  =  (/)  <->  y  C_  {
(/) } )
3029notbii 288 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  -.  y  C_  { (/) } )
31 disjssun 3677 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } )  =  (/)  ->  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  <->  y  C_  {
(/) } ) )
3231biimpcd 216 . . . . . . . . . . . 12  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  (
( y  i^i  {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } )  =  (/)  ->  y  C_  {
(/) } ) )
3332necon3bd 2635 . . . . . . . . . . 11  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  ( -.  y  C_  { (/) }  ->  ( y  i^i 
{ z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } )  =/=  (/) ) )
34 n0 3629 . . . . . . . . . . . 12  |-  ( ( y  i^i  { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } )  =/=  (/)  <->  E. w  w  e.  ( y  i^i  {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } ) )
35 elin 3522 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( y  i^i 
{ z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } )  <->  ( w  e.  y  /\  w  e. 
{ z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } ) )
368anbi2i 676 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  y  /\  w  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } )  <-> 
( w  e.  y  /\  ( w  e. 
~P ( fi `  x )  /\  (
a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) ) ) )
3735, 36bitri 241 . . . . . . . . . . . . . 14  |-  ( w  e.  ( y  i^i 
{ z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } )  <->  ( w  e.  y  /\  ( w  e.  ~P ( fi
`  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) ) ) )
38 simprrl 741 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  y  /\  ( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i 
Fin )  -.  X  =  U. b ) ) )  ->  a  C_  w )
39 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  y  /\  ( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i 
Fin )  -.  X  =  U. b ) ) )  ->  w  e.  y )
40 ssuni 4029 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  w  /\  w  e.  y )  ->  a  C_  U. y
)
4138, 39, 40syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( w  e.  y  /\  ( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i 
Fin )  -.  X  =  U. b ) ) )  ->  a  C_  U. y )
4237, 41sylbi 188 . . . . . . . . . . . . 13  |-  ( w  e.  ( y  i^i 
{ z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } )  ->  a  C_  U. y )
4342exlimiv 1644 . . . . . . . . . . . 12  |-  ( E. w  w  e.  ( y  i^i  { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } )  ->  a  C_  U. y
)
4434, 43sylbi 188 . . . . . . . . . . 11  |-  ( ( y  i^i  { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } )  =/=  (/)  ->  a  C_  U. y )
4533, 44syl6 31 . . . . . . . . . 10  |-  ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  ( -.  y  C_  { (/) }  ->  a  C_  U. y
) )
4645ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  /\  (
y  C_  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  -> 
( -.  y  C_  {
(/) }  ->  a  C_  U. y ) )
4730, 46syl5bi 209 . . . . . . . 8  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  /\  (
y  C_  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  -> 
( -.  U. y  =  (/)  ->  a  C_  U. y ) )
4847imp 419 . . . . . . 7  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  a  C_  U. y
)
49 elfpw 7399 . . . . . . . . . 10  |-  ( n  e.  ( ~P U. y  i^i  Fin )  <->  ( n  C_ 
U. y  /\  n  e.  Fin ) )
50 unieq 4016 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  (/)  ->  U. y  =  U. (/) )
51 uni0 4034 . . . . . . . . . . . . . . . . . . . 20  |-  U. (/)  =  (/)
5250, 51syl6eq 2483 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  (/)  ->  U. y  =  (/) )
5352necon3bi 2639 . . . . . . . . . . . . . . . . . 18  |-  ( -. 
U. y  =  (/)  ->  y  =/=  (/) )
5453adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( -.  U. y  =  (/)  /\  n  e.  Fin )  ->  y  =/=  (/) )
5554ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( ( -.  U. y  =  (/)  /\  n  e.  Fin )  /\  n  C_ 
U. y ) )  ->  y  =/=  (/) )
56 simplrr 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( ( -.  U. y  =  (/)  /\  n  e.  Fin )  /\  n  C_ 
U. y ) )  -> [ C.]  Or  y
)
57 simprlr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( ( -.  U. y  =  (/)  /\  n  e.  Fin )  /\  n  C_ 
U. y ) )  ->  n  e.  Fin )
58 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( ( -.  U. y  =  (/)  /\  n  e.  Fin )  /\  n  C_ 
U. y ) )  ->  n  C_  U. y
)
59 finsschain 7404 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  =/=  (/)  /\ [ C.]  Or  y )  /\  (
n  e.  Fin  /\  n  C_  U. y ) )  ->  E. w  e.  y  n  C_  w
)
6055, 56, 57, 58, 59syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( ( -.  U. y  =  (/)  /\  n  e.  Fin )  /\  n  C_ 
U. y ) )  ->  E. w  e.  y  n  C_  w )
6160expr 599 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( -.  U. y  =  (/)  /\  n  e. 
Fin ) )  -> 
( n  C_  U. y  ->  E. w  e.  y  n  C_  w )
)
62 0elpw 4361 . . . . . . . . . . . . . . . . . . . . 21  |-  (/)  e.  ~P a
63 0fin 7327 . . . . . . . . . . . . . . . . . . . . 21  |-  (/)  e.  Fin
64 elin 3522 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (/)  e.  ( ~P a  i^i 
Fin )  <->  ( (/)  e.  ~P a  /\  (/)  e.  Fin )
)
6562, 63, 64mpbir2an 887 . . . . . . . . . . . . . . . . . . . 20  |-  (/)  e.  ( ~P a  i^i  Fin )
66 unieq 4016 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  (/)  ->  U. b  =  U. (/) )
6766eqeq2d 2446 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  =  (/)  ->  ( X  =  U. b  <->  X  =  U. (/) ) )
6867notbid 286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  (/)  ->  ( -.  X  =  U. b  <->  -.  X  =  U. (/) ) )
6968rspccv 3041 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b  ->  ( (/)  e.  ( ~P a  i^i  Fin )  ->  -.  X  =  U. (/) ) )
7065, 69mpi 17 . . . . . . . . . . . . . . . . . . 19  |-  ( A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b  ->  -.  X  =  U. (/) )
71 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  n  e. 
_V
7271elpw 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  e.  ~P w  <->  n  C_  w
)
73 elin 3522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( ~P w  i^i  Fin )  <->  ( n  e.  ~P w  /\  n  e.  Fin ) )
74 unieq 4016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( b  =  n  ->  U. b  =  U. n )
7574eqeq2d 2446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( b  =  n  ->  ( X  =  U. b  <->  X  =  U. n ) )
7675notbid 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( b  =  n  ->  ( -.  X  =  U. b 
<->  -.  X  =  U. n ) )
7776rspccv 3041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b  ->  ( n  e.  ( ~P w  i^i  Fin )  ->  -.  X  =  U. n ) )
7873, 77syl5bir 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b  ->  ( ( n  e. 
~P w  /\  n  e.  Fin )  ->  -.  X  =  U. n
) )
7978exp3a 426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b  ->  ( n  e.  ~P w  ->  ( n  e. 
Fin  ->  -.  X  =  U. n ) ) )
8072, 79syl5bir 210 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b  ->  ( n  C_  w  ->  ( n  e.  Fin  ->  -.  X  =  U. n ) ) )
8180com23 74 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b  ->  ( n  e.  Fin  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) )
8281ad2antll 710 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) )  -> 
( n  e.  Fin  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) )
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  X  =  U. (/)  ->  (
( w  e.  ~P ( fi `  x )  /\  ( a  C_  w  /\  A. b  e.  ( ~P w  i^i 
Fin )  -.  X  =  U. b ) )  ->  ( n  e. 
Fin  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) ) )
84 sseq2 3362 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  (/)  ->  ( n 
C_  w  <->  n  C_  (/) ) )
85 ss0 3650 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n 
C_  (/)  ->  n  =  (/) )
8684, 85syl6bi 220 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  (/)  ->  ( n 
C_  w  ->  n  =  (/) ) )
87 unieq 4016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  (/)  ->  U. n  =  U. (/) )
8887eqeq2d 2446 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  (/)  ->  ( X  =  U. n  <->  X  =  U. (/) ) )
8988notbid 286 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  (/)  ->  ( -.  X  =  U. n  <->  -.  X  =  U. (/) ) )
9089biimprcd 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -.  X  =  U. (/)  ->  (
n  =  (/)  ->  -.  X  =  U. n
) )
9190a1dd 44 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  X  =  U. (/)  ->  (
n  =  (/)  ->  (
n  e.  Fin  ->  -.  X  =  U. n
) ) )
9286, 91syl9r 69 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  X  =  U. (/)  ->  (
w  =  (/)  ->  (
n  C_  w  ->  ( n  e.  Fin  ->  -.  X  =  U. n
) ) ) )
9392com34 79 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  X  =  U. (/)  ->  (
w  =  (/)  ->  (
n  e.  Fin  ->  ( n  C_  w  ->  -.  X  =  U. n
) ) ) )
9483, 93jaod 370 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  X  =  U. (/)  ->  (
( ( w  e. 
~P ( fi `  x )  /\  (
a  C_  w  /\  A. b  e.  ( ~P w  i^i  Fin )  -.  X  =  U. b ) )  \/  w  =  (/) )  -> 
( n  e.  Fin  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) ) )
9511, 94syl5bi 209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  X  =  U. (/)  ->  (
w  e.  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  ->  (
n  e.  Fin  ->  ( n  C_  w  ->  -.  X  =  U. n
) ) ) )
961, 95sylan9r 640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( -.  X  =  U. (/) 
/\  y  C_  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } ) )  ->  ( w  e.  y  ->  ( n  e.  Fin  ->  (
n  C_  w  ->  -.  X  =  U. n
) ) ) )
9796com23 74 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -.  X  =  U. (/) 
/\  y  C_  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } ) )  ->  ( n  e.  Fin  ->  ( w  e.  y  ->  ( n 
C_  w  ->  -.  X  =  U. n
) ) ) )
9870, 97sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b  /\  y  C_  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } ) )  ->  ( n  e.  Fin  ->  ( w  e.  y  ->  ( n 
C_  w  ->  -.  X  =  U. n
) ) ) )
9998ad2ant2lr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  /\  (
y  C_  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  -> 
( n  e.  Fin  ->  ( w  e.  y  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) ) )
10099imp 419 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  n  e.  Fin )  ->  ( w  e.  y  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) )
101100adantrl 697 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( -.  U. y  =  (/)  /\  n  e. 
Fin ) )  -> 
( w  e.  y  ->  ( n  C_  w  ->  -.  X  =  U. n ) ) )
102101rexlimdv 2821 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( -.  U. y  =  (/)  /\  n  e. 
Fin ) )  -> 
( E. w  e.  y  n  C_  w  ->  -.  X  =  U. n ) )
10361, 102syld 42 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  ( -.  U. y  =  (/)  /\  n  e. 
Fin ) )  -> 
( n  C_  U. y  ->  -.  X  =  U. n ) )
104103expr 599 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  ( n  e. 
Fin  ->  ( n  C_  U. y  ->  -.  X  =  U. n ) ) )
105104com23 74 . . . . . . . . . . 11  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  ( n  C_  U. y  ->  ( n  e.  Fin  ->  -.  X  =  U. n ) ) )
106105imp3a 421 . . . . . . . . . 10  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  ( ( n 
C_  U. y  /\  n  e.  Fin )  ->  -.  X  =  U. n
) )
10749, 106syl5bi 209 . . . . . . . . 9  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  ( n  e.  ( ~P U. y  i^i  Fin )  ->  -.  X  =  U. n
) )
108107ralrimiv 2780 . . . . . . . 8  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  A. n  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. n )
109 unieq 4016 . . . . . . . . . . 11  |-  ( n  =  b  ->  U. n  =  U. b )
110109eqeq2d 2446 . . . . . . . . . 10  |-  ( n  =  b  ->  ( X  =  U. n  <->  X  =  U. b ) )
111110notbid 286 . . . . . . . . 9  |-  ( n  =  b  ->  ( -.  X  =  U. n 
<->  -.  X  =  U. b ) )
112111cbvralv 2924 . . . . . . . 8  |-  ( A. n  e.  ( ~P U. y  i^i  Fin )  -.  X  =  U. n 
<-> 
A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b )
113108, 112sylib 189 . . . . . . 7  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b )
11428, 48, 113jca32 522 . . . . . 6  |-  ( ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  /\  a  e.  ~P ( fi `  x
) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b
)  /\  ( y  C_  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  /\  -.  U. y  =  (/) )  ->  ( U. y  e.  ~P ( fi `  x )  /\  (
a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) )
115114ex 424 . . . . 5  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  /\  (
y  C_  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  -> 
( -.  U. y  =  (/)  ->  ( U. y  e.  ~P ( fi `  x )  /\  ( a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) ) )
116 orcom 377 . . . . . 6  |-  ( ( U. y  e.  { (/)
}  \/  U. y  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } )  <->  ( U. y  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  \/  U. y  e. 
{ (/) } ) )
11726elsnc 3829 . . . . . . . 8  |-  ( U. y  e.  { (/) }  <->  U. y  =  (/) )
118 sseq2 3362 . . . . . . . . . 10  |-  ( z  =  U. y  -> 
( a  C_  z  <->  a 
C_  U. y ) )
119 pweq 3794 . . . . . . . . . . . 12  |-  ( z  =  U. y  ->  ~P z  =  ~P U. y )
120119ineq1d 3533 . . . . . . . . . . 11  |-  ( z  =  U. y  -> 
( ~P z  i^i 
Fin )  =  ( ~P U. y  i^i 
Fin ) )
121120raleqdv 2902 . . . . . . . . . 10  |-  ( z  =  U. y  -> 
( A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b  <->  A. b  e.  ( ~P U. y  i^i  Fin )  -.  X  =  U. b ) )
122118, 121anbi12d 692 . . . . . . . . 9  |-  ( z  =  U. y  -> 
( ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b )  <->  ( a  C_ 
U. y  /\  A. b  e.  ( ~P U. y  i^i  Fin )  -.  X  =  U. b ) ) )
123122elrab 3084 . . . . . . . 8  |-  ( U. y  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  <->  ( U. y  e.  ~P ( fi `  x )  /\  ( a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) )
124117, 123orbi12i 508 . . . . . . 7  |-  ( ( U. y  e.  { (/)
}  \/  U. y  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) } )  <->  ( U. y  =  (/)  \/  ( U. y  e.  ~P ( fi `  x )  /\  ( a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) ) )
125 df-or 360 . . . . . . 7  |-  ( ( U. y  =  (/)  \/  ( U. y  e. 
~P ( fi `  x )  /\  (
a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) )  <->  ( -.  U. y  =  (/)  ->  ( U. y  e.  ~P ( fi `  x )  /\  ( a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i  Fin )  -.  X  =  U. b ) ) ) )
126124, 125bitr2i 242 . . . . . 6  |-  ( ( -.  U. y  =  (/)  ->  ( U. y  e.  ~P ( fi `  x )  /\  (
a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) )  <->  ( U. y  e.  { (/) }  \/  U. y  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) } ) )
127 elun 3480 . . . . . 6  |-  ( U. y  e.  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  <->  ( U. y  e.  { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  \/  U. y  e.  { (/) } ) )
128116, 126, 1273bitr4i 269 . . . . 5  |-  ( ( -.  U. y  =  (/)  ->  ( U. y  e.  ~P ( fi `  x )  /\  (
a  C_  U. y  /\  A. b  e.  ( ~P U. y  i^i 
Fin )  -.  X  =  U. b ) ) )  <->  U. y  e.  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } ) )
129115, 128sylib 189 . . . 4  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  /\  (
y  C_  ( {
z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y ) )  ->  U. y  e.  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } ) )
130129ex 424 . . 3  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  ->  (
( y  C_  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } )  /\ [ C.]  Or  y
)  ->  U. y  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } ) ) )
131130alrimiv 1641 . 2  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  ->  A. y
( ( y  C_  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } )  /\ [ C.]  Or  y
)  ->  U. y  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } ) ) )
132 fvex 5733 . . . . . 6  |-  ( fi
`  x )  e. 
_V
133132pwex 4374 . . . . 5  |-  ~P ( fi `  x )  e. 
_V
134133rabex 4346 . . . 4  |-  { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  e.  _V
135 p0ex 4378 . . . 4  |-  { (/) }  e.  _V
136134, 135unex 4698 . . 3  |-  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  e.  _V
137136zorn 8376 . 2  |-  ( A. y ( ( y 
C_  ( { z  e.  ~P ( fi
`  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  /\ [ C.]  Or  y )  ->  U. y  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } ) )  ->  E. u  e.  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } ) A. v  e.  ( { z  e.  ~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i 
Fin )  -.  X  =  U. b ) }  u.  { (/) } )  -.  u  C.  v
)
138131, 137syl 16 1  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )  /\  a  e.  ~P ( fi `  x ) )  /\  A. b  e.  ( ~P a  i^i  Fin )  -.  X  =  U. b )  ->  E. u  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } ) A. v  e.  ( { z  e. 
~P ( fi `  x )  |  ( a  C_  z  /\  A. b  e.  ( ~P z  i^i  Fin )  -.  X  =  U. b ) }  u.  {
(/) } )  -.  u  C.  v )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701    u. cun 3310    i^i cin 3311    C_ wss 3312    C. wpss 3313   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007    Or wor 4494   ` cfv 5445   [ C.] crpss 6512   Fincfn 7100   ficfi 7406   topGenctg 13653
This theorem is referenced by:  alexsubALTlem4  18069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-ac2 8332
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-rpss 6513  df-riota 6540  df-recs 6624  df-1o 6715  df-er 6896  df-en 7101  df-fin 7104  df-card 7815  df-ac 7986
  Copyright terms: Public domain W3C validator