MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alimdh Unicode version

Theorem alimdh 1551
Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 4-Jan-2002.)
Hypotheses
Ref Expression
alimdh.1  |-  ( ph  ->  A. x ph )
alimdh.2  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
alimdh  |-  ( ph  ->  ( A. x ps 
->  A. x ch )
)

Proof of Theorem alimdh
StepHypRef Expression
1 alimdh.1 . 2  |-  ( ph  ->  A. x ph )
2 alimdh.2 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
32al2imi 1549 . 2  |-  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) )
41, 3syl 17 1  |-  ( ph  ->  ( A. x ps 
->  A. x ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532
This theorem is referenced by:  alrimdh  1585  hbald  1614  alimd  1705  dral1  1855  dral1-o  1856  ax11indalem  2110  ax11inda2ALT  2111  ax9vax9  28062
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-mp 10  ax-5 1533  ax-gen 1536
  Copyright terms: Public domain W3C validator