MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimdh Unicode version

Theorem alrimdh 1585
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
alrimdh.1  |-  ( ph  ->  A. x ph )
alrimdh.2  |-  ( ps 
->  A. x ps )
alrimdh.3  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
alrimdh  |-  ( ph  ->  ( ps  ->  A. x ch ) )

Proof of Theorem alrimdh
StepHypRef Expression
1 alrimdh.2 . 2  |-  ( ps 
->  A. x ps )
2 alrimdh.1 . . 3  |-  ( ph  ->  A. x ph )
3 alrimdh.3 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
42, 3alimdh 1551 . 2  |-  ( ph  ->  ( A. x ps 
->  A. x ch )
)
51, 4syl5 30 1  |-  ( ph  ->  ( ps  ->  A. x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532
This theorem is referenced by:  ax11indn  2111  gen21nv  27405
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-mp 10  ax-5 1533  ax-gen 1536
  Copyright terms: Public domain W3C validator