MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alsyl Unicode version

Theorem alsyl 1603
Description: Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
alsyl  |-  ( ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ch ) )  ->  A. x
( ph  ->  ch )
)

Proof of Theorem alsyl
StepHypRef Expression
1 pm3.33 570 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) )
21alanimi 1550 1  |-  ( ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ch ) )  ->  A. x
( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1528
This theorem is referenced by:  barbara  2241
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator