MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alsyl Unicode version

Theorem alsyl 1605
Description: Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
alsyl  |-  ( ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ch ) )  ->  A. x
( ph  ->  ch )
)

Proof of Theorem alsyl
StepHypRef Expression
1 pm3.33 568 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) )
21alanimi 1552 1  |-  ( ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ch ) )  ->  A. x
( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530
This theorem is referenced by:  barbara  2253
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator