MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Unicode version

Theorem amgm 20248
Description: Inequality of arithmetic and geometric means. Here  ( M  gsumg  F ) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements  F ( x ) ,  x  e.  A together), and  (fld 
gsumg  F ) calculates the group sum in the additive group (i.e. the sum of the elements). (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1  |-  M  =  (mulGrp ` fld )
Assertion
Ref Expression
amgm  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )

Proof of Theorem amgm
StepHypRef Expression
1 amgm.1 . . . . . . . . . 10  |-  M  =  (mulGrp ` fld )
2 cnfldbas 16346 . . . . . . . . . 10  |-  CC  =  ( Base ` fld )
31, 2mgpbas 15294 . . . . . . . . 9  |-  CC  =  ( Base `  M )
4 cnfld1 16362 . . . . . . . . . 10  |-  1  =  ( 1r ` fld )
51, 4rngidval 15306 . . . . . . . . 9  |-  1  =  ( 0g `  M )
6 cnfldmul 16348 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
71, 6mgpplusg 15292 . . . . . . . . 9  |-  x.  =  ( +g  `  M )
8 cncrng 16358 . . . . . . . . . 10  |-fld  e.  CRing
91crngmgp 15312 . . . . . . . . . 10  |-  (fld  e.  CRing  ->  M  e. CMnd )
108, 9mp1i 13 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  M  e. CMnd )
11 simpl1 963 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  A  e.  Fin )
12 simpl3 965 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  F : A
--> ( 0 [,)  +oo ) )
13 0re 8806 . . . . . . . . . . . 12  |-  0  e.  RR
14 pnfxr 10423 . . . . . . . . . . . 12  |-  +oo  e.  RR*
15 icossre 10697 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
1613, 14, 15mp2an 656 . . . . . . . . . . 11  |-  ( 0 [,)  +oo )  C_  RR
17 ax-resscn 8762 . . . . . . . . . . 11  |-  RR  C_  CC
1816, 17sstri 3163 . . . . . . . . . 10  |-  ( 0 [,)  +oo )  C_  CC
19 fss 5335 . . . . . . . . . 10  |-  ( ( F : A --> ( 0 [,)  +oo )  /\  (
0 [,)  +oo )  C_  CC )  ->  F : A
--> CC )
2012, 18, 19sylancl 646 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  F : A
--> CC )
2111, 12fisuppfi 14413 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( `' F " ( _V  \  { 1 } ) )  e.  Fin )
22 disjdif 3501 . . . . . . . . . 10  |-  ( { x }  i^i  ( A  \  { x }
) )  =  (/)
2322a1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( {
x }  i^i  ( A  \  { x }
) )  =  (/) )
24 undif2 3505 . . . . . . . . . 10  |-  ( { x }  u.  ( A  \  { x }
) )  =  ( { x }  u.  A )
25 simprl 735 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  x  e.  A )
2625snssd 3734 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  { x }  C_  A )
27 ssequn1 3320 . . . . . . . . . . 11  |-  ( { x }  C_  A  <->  ( { x }  u.  A )  =  A )
2826, 27sylib 190 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( {
x }  u.  A
)  =  A )
2924, 28syl5req 2303 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  A  =  ( { x }  u.  ( A  \  { x } ) ) )
303, 5, 7, 10, 11, 20, 21, 23, 29gsumsplit 15170 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  F )  =  ( ( M  gsumg  ( F  |`  { x } ) )  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) ) )
3112, 26feqresmpt 5510 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F  |` 
{ x } )  =  ( y  e. 
{ x }  |->  ( F `  y ) ) )
3231oveq2d 5808 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( F  |`  { x } ) )  =  ( M  gsumg  ( y  e.  {
x }  |->  ( F `
 y ) ) ) )
33 cnrng 16359 . . . . . . . . . . . 12  |-fld  e.  Ring
341rngmgp 15310 . . . . . . . . . . . 12  |-  (fld  e.  Ring  ->  M  e.  Mnd )
3533, 34mp1i 13 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  M  e.  Mnd )
36 ffvelrn 5597 . . . . . . . . . . . 12  |-  ( ( F : A --> CC  /\  x  e.  A )  ->  ( F `  x
)  e.  CC )
3720, 25, 36syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F `  x )  e.  CC )
38 fveq2 5458 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
393, 38gsumsn 15183 . . . . . . . . . . 11  |-  ( ( M  e.  Mnd  /\  x  e.  A  /\  ( F `  x )  e.  CC )  -> 
( M  gsumg  ( y  e.  {
x }  |->  ( F `
 y ) ) )  =  ( F `
 x ) )
4035, 25, 37, 39syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( y  e.  { x }  |->  ( F `  y ) ) )  =  ( F `  x ) )
41 simprr 736 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F `  x )  =  0 )
4232, 40, 413eqtrd 2294 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( F  |`  { x } ) )  =  0 )
4342oveq1d 5807 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  ( F  |`  { x } ) )  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) )  =  ( 0  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) ) )
44 diffi 7057 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  ( A  \  { x }
)  e.  Fin )
4511, 44syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( A  \  { x } )  e.  Fin )
46 difss 3278 . . . . . . . . . . 11  |-  ( A 
\  { x }
)  C_  A
47 fssres 5346 . . . . . . . . . . 11  |-  ( ( F : A --> CC  /\  ( A  \  { x } )  C_  A
)  ->  ( F  |`  ( A  \  {
x } ) ) : ( A  \  { x } ) --> CC )
4820, 46, 47sylancl 646 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F  |`  ( A  \  {
x } ) ) : ( A  \  { x } ) --> CC )
4945, 48fisuppfi 14413 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( `' ( F  |`  ( A 
\  { x }
) ) " ( _V  \  { 1 } ) )  e.  Fin )
503, 5, 10, 45, 48, 49gsumcl 15161 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( F  |`  ( A  \  { x } ) ) )  e.  CC )
5150mul02d 8978 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 0  x.  ( M  gsumg  ( F  |`  ( A  \  {
x } ) ) ) )  =  0 )
5230, 43, 513eqtrd 2294 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  F )  =  0 )
5352oveq1d 5807 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  =  ( 0  ^ c  ( 1  /  ( # `  A
) ) ) )
54 simpl2 964 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  A  =/=  (/) )
55 hashnncl 11321 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  A  =/=  (/) ) )
5611, 55syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( # `
 A )  e.  NN  <->  A  =/=  (/) ) )
5754, 56mpbird 225 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  e.  NN )
5857nncnd 9730 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  e.  CC )
5957nnne0d 9758 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  =/=  0 )
6058, 59reccld 9497 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 1  /  ( # `  A
) )  e.  CC )
6158, 59recne0d 9498 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 1  /  ( # `  A
) )  =/=  0
)
6260, 610cxpd 20020 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 0  ^ c  ( 1  /  ( # `  A
) ) )  =  0 )
6353, 62eqtrd 2290 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  =  0 )
64 cnfld0 16361 . . . . . . . 8  |-  0  =  ( 0g ` fld )
65 rngcmn 15334 . . . . . . . . 9  |-  (fld  e.  Ring  ->fld  e. CMnd )
6633, 65mp1i 13 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->fld  e. CMnd )
67 rege0subm 16391 . . . . . . . . 9  |-  ( 0 [,)  +oo )  e.  (SubMnd ` fld )
6867a1i 12 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 0 [,)  +oo )  e.  (SubMnd ` fld ) )
6911, 12fisuppfi 14413 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( `' F " ( _V  \  { 0 } ) )  e.  Fin )
7064, 66, 11, 68, 12, 69gsumsubmcl 15164 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  (fld  gsumg  F )  e.  ( 0 [,)  +oo )
)
71 elrege0 10713 . . . . . . 7  |-  ( (fld  gsumg  F )  e.  ( 0 [,) 
+oo )  <->  ( (fld  gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) ) )
7270, 71sylib 190 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( (fld  gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) ) )
7357nnred 9729 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  e.  RR )
7457nngt0d 9757 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  0  <  (
# `  A )
)
75 divge0 9593 . . . . . 6  |-  ( ( ( (fld 
gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) )  /\  ( ( # `  A
)  e.  RR  /\  0  <  ( # `  A
) ) )  -> 
0  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
7672, 73, 74, 75syl12anc 1185 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  0  <_  ( (fld 
gsumg  F )  /  ( # `
 A ) ) )
7763, 76eqbrtrd 4017 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
7877expr 601 . . 3  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( ( F `  x )  =  0  ->  ( ( M 
gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
7978rexlimdva 2642 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( E. x  e.  A  ( F `  x )  =  0  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
80 ralnex 2528 . . 3  |-  ( A. x  e.  A  -.  ( F `  x )  =  0  <->  -.  E. x  e.  A  ( F `  x )  =  0 )
81 simpl1 963 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A  e.  Fin )
82 simpl2 964 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A  =/=  (/) )
83 simpl3 965 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F : A --> ( 0 [,)  +oo ) )
84 ffn 5327 . . . . . . 7  |-  ( F : A --> ( 0 [,)  +oo )  ->  F  Fn  A )
8583, 84syl 17 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F  Fn  A )
86 ffvelrn 5597 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> ( 0 [,)  +oo )  /\  x  e.  A )  ->  ( F `  x )  e.  ( 0 [,)  +oo ) )
87863ad2antl3 1124 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( F `  x
)  e.  ( 0 [,)  +oo ) )
88 elrege0 10713 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
8987, 88sylib 190 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x ) ) )
9089simprd 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  0  <_  ( F `  x ) )
9189simpld 447 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( F `  x
)  e.  RR )
92 leloe 8876 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
( 0  <_  ( F `  x )  <->  ( 0  <  ( F `
 x )  \/  0  =  ( F `
 x ) ) ) )
9313, 91, 92sylancr 647 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( 0  <_  ( F `  x )  <->  ( 0  <  ( F `
 x )  \/  0  =  ( F `
 x ) ) ) )
9490, 93mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( 0  <  ( F `  x )  \/  0  =  ( F `  x )
) )
9594ord 368 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  0  < 
( F `  x
)  ->  0  =  ( F `  x ) ) )
96 eqcom 2260 . . . . . . . . . . 11  |-  ( 0  =  ( F `  x )  <->  ( F `  x )  =  0 )
9795, 96syl6ib 219 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  0  < 
( F `  x
)  ->  ( F `  x )  =  0 ) )
9897con1d 118 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  ( F `
 x )  =  0  ->  0  <  ( F `  x ) ) )
99 elrp 10324 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  RR+  <->  ( ( F `
 x )  e.  RR  /\  0  < 
( F `  x
) ) )
10099baib 876 . . . . . . . . . 10  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  RR+  <->  0  <  ( F `  x ) ) )
10191, 100syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( ( F `  x )  e.  RR+  <->  0  <  ( F `  x ) ) )
10298, 101sylibrd 227 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  ( F `
 x )  =  0  ->  ( F `  x )  e.  RR+ ) )
103102ralimdva 2596 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( A. x  e.  A  -.  ( F `  x
)  =  0  ->  A. x  e.  A  ( F `  x )  e.  RR+ ) )
104103imp 420 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A. x  e.  A  ( F `  x )  e.  RR+ )
105 ffnfv 5619 . . . . . 6  |-  ( F : A --> RR+  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  RR+ ) )
10685, 104, 105sylanbrc 648 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F : A --> RR+ )
1071, 81, 82, 106amgmlem 20247 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  -> 
( ( M  gsumg  F )  ^ c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) )
108107ex 425 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( A. x  e.  A  -.  ( F `  x
)  =  0  -> 
( ( M  gsumg  F )  ^ c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) ) )
10980, 108syl5bir 211 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( -.  E. x  e.  A  ( F `  x )  =  0  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
11079, 109pm2.61d 152 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   _Vcvv 2763    \ cdif 3124    u. cun 3125    i^i cin 3126    C_ wss 3127   (/)c0 3430   {csn 3614   class class class wbr 3997    e. cmpt 4051    |` cres 4663    Fn wfn 4668   -->wf 4669   ` cfv 4673  (class class class)co 5792   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    +oocpnf 8832   RR*cxr 8834    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   RR+crp 10322   [,)cico 10625   #chash 11304    gsumg cgsu 13364   Mndcmnd 14324  SubMndcsubmnd 14377  CMndccmn 15052  mulGrpcmgp 15288   Ringcrg 15300   CRingccrg 15301  ℂfldccnfld 16340    ^ c ccxp 19876
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-tpos 6168  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ioc 10628  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312  df-sin 12314  df-cos 12315  df-pi 12317  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-mhm 14378  df-submnd 14379  df-grp 14452  df-minusg 14453  df-mulg 14455  df-subg 14581  df-ghm 14644  df-gim 14686  df-cntz 14756  df-cmn 15054  df-abl 15055  df-mgp 15289  df-ring 15303  df-cring 15304  df-ur 15305  df-oppr 15368  df-dvdsr 15386  df-unit 15387  df-invr 15417  df-dvr 15428  df-drng 15477  df-subrg 15506  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-cmp 17077  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-limc 19179  df-dv 19180  df-log 19877  df-cxp 19878
  Copyright terms: Public domain W3C validator