MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Unicode version

Theorem amgm 20212
Description: Inequality of arithmetic and geometric means. Here  ( M  gsumg  F ) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements  F ( x ) ,  x  e.  A together), and  (fld 
gsumg  F ) calculates the group sum in the additive group (i.e. the sum of the elements). (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1  |-  M  =  (mulGrp ` fld )
Assertion
Ref Expression
amgm  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )

Proof of Theorem amgm
StepHypRef Expression
1 amgm.1 . . . . . . . . . 10  |-  M  =  (mulGrp ` fld )
2 cnfldbas 16310 . . . . . . . . . 10  |-  CC  =  ( Base ` fld )
31, 2mgpbas 15258 . . . . . . . . 9  |-  CC  =  ( Base `  M )
4 cnfld1 16326 . . . . . . . . . 10  |-  1  =  ( 1r ` fld )
51, 4rngidval 15270 . . . . . . . . 9  |-  1  =  ( 0g `  M )
6 cnfldmul 16312 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
71, 6mgpplusg 15256 . . . . . . . . 9  |-  x.  =  ( +g  `  M )
8 cncrng 16322 . . . . . . . . . 10  |-fld  e.  CRing
91crngmgp 15276 . . . . . . . . . 10  |-  (fld  e.  CRing  ->  M  e. CMnd )
108, 9mp1i 13 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  M  e. CMnd )
11 simpl1 963 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  A  e.  Fin )
12 simpl3 965 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  F : A
--> ( 0 [,)  +oo ) )
13 0re 8771 . . . . . . . . . . . 12  |-  0  e.  RR
14 pnfxr 10387 . . . . . . . . . . . 12  |-  +oo  e.  RR*
15 icossre 10661 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
1613, 14, 15mp2an 656 . . . . . . . . . . 11  |-  ( 0 [,)  +oo )  C_  RR
17 ax-resscn 8727 . . . . . . . . . . 11  |-  RR  C_  CC
1816, 17sstri 3130 . . . . . . . . . 10  |-  ( 0 [,)  +oo )  C_  CC
19 fss 5300 . . . . . . . . . 10  |-  ( ( F : A --> ( 0 [,)  +oo )  /\  (
0 [,)  +oo )  C_  CC )  ->  F : A
--> CC )
2012, 18, 19sylancl 646 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  F : A
--> CC )
2111, 12fisuppfi 14377 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( `' F " ( _V  \  { 1 } ) )  e.  Fin )
22 disjdif 3468 . . . . . . . . . 10  |-  ( { x }  i^i  ( A  \  { x }
) )  =  (/)
2322a1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( {
x }  i^i  ( A  \  { x }
) )  =  (/) )
24 undif2 3472 . . . . . . . . . 10  |-  ( { x }  u.  ( A  \  { x }
) )  =  ( { x }  u.  A )
25 simprl 735 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  x  e.  A )
2625snssd 3701 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  { x }  C_  A )
27 ssequn1 3287 . . . . . . . . . . 11  |-  ( { x }  C_  A  <->  ( { x }  u.  A )  =  A )
2826, 27sylib 190 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( {
x }  u.  A
)  =  A )
2924, 28syl5req 2301 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  A  =  ( { x }  u.  ( A  \  { x } ) ) )
303, 5, 7, 10, 11, 20, 21, 23, 29gsumsplit 15134 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  F )  =  ( ( M  gsumg  ( F  |`  { x } ) )  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) ) )
3112, 26feqresmpt 5475 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F  |` 
{ x } )  =  ( y  e. 
{ x }  |->  ( F `  y ) ) )
3231oveq2d 5773 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( F  |`  { x } ) )  =  ( M  gsumg  ( y  e.  {
x }  |->  ( F `
 y ) ) ) )
33 cnrng 16323 . . . . . . . . . . . 12  |-fld  e.  Ring
341rngmgp 15274 . . . . . . . . . . . 12  |-  (fld  e.  Ring  ->  M  e.  Mnd )
3533, 34mp1i 13 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  M  e.  Mnd )
36 ffvelrn 5562 . . . . . . . . . . . 12  |-  ( ( F : A --> CC  /\  x  e.  A )  ->  ( F `  x
)  e.  CC )
3720, 25, 36syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F `  x )  e.  CC )
38 fveq2 5423 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
393, 38gsumsn 15147 . . . . . . . . . . 11  |-  ( ( M  e.  Mnd  /\  x  e.  A  /\  ( F `  x )  e.  CC )  -> 
( M  gsumg  ( y  e.  {
x }  |->  ( F `
 y ) ) )  =  ( F `
 x ) )
4035, 25, 37, 39syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( y  e.  { x }  |->  ( F `  y ) ) )  =  ( F `  x ) )
41 simprr 736 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F `  x )  =  0 )
4232, 40, 413eqtrd 2292 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( F  |`  { x } ) )  =  0 )
4342oveq1d 5772 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  ( F  |`  { x } ) )  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) )  =  ( 0  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) ) )
44 diffi 7022 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  ( A  \  { x }
)  e.  Fin )
4511, 44syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( A  \  { x } )  e.  Fin )
46 difss 3245 . . . . . . . . . . 11  |-  ( A 
\  { x }
)  C_  A
47 fssres 5311 . . . . . . . . . . 11  |-  ( ( F : A --> CC  /\  ( A  \  { x } )  C_  A
)  ->  ( F  |`  ( A  \  {
x } ) ) : ( A  \  { x } ) --> CC )
4820, 46, 47sylancl 646 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( F  |`  ( A  \  {
x } ) ) : ( A  \  { x } ) --> CC )
4945, 48fisuppfi 14377 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( `' ( F  |`  ( A 
\  { x }
) ) " ( _V  \  { 1 } ) )  e.  Fin )
503, 5, 10, 45, 48, 49gsumcl 15125 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  ( F  |`  ( A  \  { x } ) ) )  e.  CC )
5150mul02d 8943 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 0  x.  ( M  gsumg  ( F  |`  ( A  \  {
x } ) ) ) )  =  0 )
5230, 43, 513eqtrd 2292 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( M  gsumg  F )  =  0 )
5352oveq1d 5772 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  =  ( 0  ^ c  ( 1  /  ( # `  A
) ) ) )
54 simpl2 964 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  A  =/=  (/) )
55 hashnncl 11285 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  A  =/=  (/) ) )
5611, 55syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( # `
 A )  e.  NN  <->  A  =/=  (/) ) )
5754, 56mpbird 225 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  e.  NN )
5857nncnd 9695 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  e.  CC )
5957nnne0d 9723 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  =/=  0 )
6058, 59reccld 9462 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 1  /  ( # `  A
) )  e.  CC )
6158, 59recne0d 9463 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 1  /  ( # `  A
) )  =/=  0
)
6260, 610cxpd 19984 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 0  ^ c  ( 1  /  ( # `  A
) ) )  =  0 )
6353, 62eqtrd 2288 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  =  0 )
64 cnfld0 16325 . . . . . . . 8  |-  0  =  ( 0g ` fld )
65 rngcmn 15298 . . . . . . . . 9  |-  (fld  e.  Ring  ->fld  e. CMnd )
6633, 65mp1i 13 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->fld  e. CMnd )
67 rege0subm 16355 . . . . . . . . 9  |-  ( 0 [,)  +oo )  e.  (SubMnd ` fld )
6867a1i 12 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( 0 [,)  +oo )  e.  (SubMnd ` fld ) )
6911, 12fisuppfi 14377 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( `' F " ( _V  \  { 0 } ) )  e.  Fin )
7064, 66, 11, 68, 12, 69gsumsubmcl 15128 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  (fld  gsumg  F )  e.  ( 0 [,)  +oo )
)
71 elrege0 10677 . . . . . . 7  |-  ( (fld  gsumg  F )  e.  ( 0 [,) 
+oo )  <->  ( (fld  gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) ) )
7270, 71sylib 190 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( (fld  gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) ) )
7357nnred 9694 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( # `  A
)  e.  RR )
7457nngt0d 9722 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  0  <  (
# `  A )
)
75 divge0 9558 . . . . . 6  |-  ( ( ( (fld 
gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) )  /\  ( ( # `  A
)  e.  RR  /\  0  <  ( # `  A
) ) )  -> 
0  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
7672, 73, 74, 75syl12anc 1185 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  0  <_  ( (fld 
gsumg  F )  /  ( # `
 A ) ) )
7763, 76eqbrtrd 3983 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  ( x  e.  A  /\  ( F `  x
)  =  0 ) )  ->  ( ( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
7877expr 601 . . 3  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( ( F `  x )  =  0  ->  ( ( M 
gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
7978rexlimdva 2638 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( E. x  e.  A  ( F `  x )  =  0  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
80 ralnex 2524 . . 3  |-  ( A. x  e.  A  -.  ( F `  x )  =  0  <->  -.  E. x  e.  A  ( F `  x )  =  0 )
81 simpl1 963 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A  e.  Fin )
82 simpl2 964 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A  =/=  (/) )
83 simpl3 965 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F : A --> ( 0 [,)  +oo ) )
84 ffn 5292 . . . . . . 7  |-  ( F : A --> ( 0 [,)  +oo )  ->  F  Fn  A )
8583, 84syl 17 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F  Fn  A )
86 ffvelrn 5562 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> ( 0 [,)  +oo )  /\  x  e.  A )  ->  ( F `  x )  e.  ( 0 [,)  +oo ) )
87863ad2antl3 1124 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( F `  x
)  e.  ( 0 [,)  +oo ) )
88 elrege0 10677 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
8987, 88sylib 190 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x ) ) )
9089simprd 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  0  <_  ( F `  x ) )
9189simpld 447 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( F `  x
)  e.  RR )
92 leloe 8841 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
( 0  <_  ( F `  x )  <->  ( 0  <  ( F `
 x )  \/  0  =  ( F `
 x ) ) ) )
9313, 91, 92sylancr 647 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( 0  <_  ( F `  x )  <->  ( 0  <  ( F `
 x )  \/  0  =  ( F `
 x ) ) ) )
9490, 93mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( 0  <  ( F `  x )  \/  0  =  ( F `  x )
) )
9594ord 368 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  0  < 
( F `  x
)  ->  0  =  ( F `  x ) ) )
96 eqcom 2258 . . . . . . . . . . 11  |-  ( 0  =  ( F `  x )  <->  ( F `  x )  =  0 )
9795, 96syl6ib 219 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  0  < 
( F `  x
)  ->  ( F `  x )  =  0 ) )
9897con1d 118 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  ( F `
 x )  =  0  ->  0  <  ( F `  x ) ) )
99 elrp 10288 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  RR+  <->  ( ( F `
 x )  e.  RR  /\  0  < 
( F `  x
) ) )
10099baib 876 . . . . . . . . . 10  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  RR+  <->  0  <  ( F `  x ) ) )
10191, 100syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( ( F `  x )  e.  RR+  <->  0  <  ( F `  x ) ) )
10298, 101sylibrd 227 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  x  e.  A )  ->  ( -.  ( F `
 x )  =  0  ->  ( F `  x )  e.  RR+ ) )
103102ralimdva 2592 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( A. x  e.  A  -.  ( F `  x
)  =  0  ->  A. x  e.  A  ( F `  x )  e.  RR+ ) )
104103imp 420 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A. x  e.  A  ( F `  x )  e.  RR+ )
105 ffnfv 5584 . . . . . 6  |-  ( F : A --> RR+  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  RR+ ) )
10685, 104, 105sylanbrc 648 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F : A --> RR+ )
1071, 81, 82, 106amgmlem 20211 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) 
+oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  -> 
( ( M  gsumg  F )  ^ c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) )
108107ex 425 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( A. x  e.  A  -.  ( F `  x
)  =  0  -> 
( ( M  gsumg  F )  ^ c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) ) )
10980, 108syl5bir 211 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  ( -.  E. x  e.  A  ( F `  x )  =  0  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
11079, 109pm2.61d 152 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,)  +oo ) )  ->  (
( M  gsumg  F )  ^ c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   _Vcvv 2740    \ cdif 3091    u. cun 3092    i^i cin 3093    C_ wss 3094   (/)c0 3397   {csn 3581   class class class wbr 3963    e. cmpt 4017    |` cres 4628    Fn wfn 4633   -->wf 4634   ` cfv 4638  (class class class)co 5757   Fincfn 6796   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    x. cmul 8675    +oocpnf 8797   RR*cxr 8799    < clt 8800    <_ cle 8801    / cdiv 9356   NNcn 9679   RR+crp 10286   [,)cico 10589   #chash 11268    gsumg cgsu 13328   Mndcmnd 14288  SubMndcsubmnd 14341  CMndccmn 15016  mulGrpcmgp 15252   Ringcrg 15264   CRingccrg 15265  ℂfldccnfld 16304    ^ c ccxp 19840
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276  df-sin 12278  df-cos 12279  df-pi 12281  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-mhm 14342  df-submnd 14343  df-grp 14416  df-minusg 14417  df-mulg 14419  df-subg 14545  df-ghm 14608  df-gim 14650  df-cntz 14720  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-cring 15268  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-invr 15381  df-dvr 15392  df-drng 15441  df-subrg 15470  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-cmp 17041  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144  df-log 19841  df-cxp 19842
  Copyright terms: Public domain W3C validator