MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an31s Unicode version

Theorem an31s 783
Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
Hypothesis
Ref Expression
an32s.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
an31s  |-  ( ( ( ch  /\  ps )  /\  ph )  ->  th )

Proof of Theorem an31s
StepHypRef Expression
1 an32s.1 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
21exp31 589 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com13 76 . 2  |-  ( ch 
->  ( ps  ->  ( ph  ->  th ) ) )
43imp31 423 1  |-  ( ( ( ch  /\  ps )  /\  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  icoopnst  18431  grpoidinvlem3  20865  kbop  22525  frmin  23643
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator