MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1 Unicode version

Theorem anbi1 687
Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
anbi1  |-  ( (
ph 
<->  ps )  ->  (
( ph  /\  ch )  <->  ( ps  /\  ch )
) )

Proof of Theorem anbi1
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21anbi1d 685 1  |-  ( (
ph 
<->  ps )  ->  (
( ph  /\  ch )  <->  ( ps  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358
This theorem is referenced by:  pm5.75  903  rexfiuz  11847  relexpindlem  24051  nabi1  24900  bnj916  29281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator