MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anclb Unicode version

Theorem anclb 530
Description: Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
anclb  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ( ph  /\  ps ) ) )

Proof of Theorem anclb
StepHypRef Expression
1 ibar 490 . 2  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
21pm5.74i 236 1  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ( ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358
This theorem is referenced by:  pm4.71  611  difin  3406  bnj1021  28369  dihglblem6  30903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator