MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancomsimp Structured version   Unicode version

Theorem ancomsimp 1379
Description: Closed form of ancoms 441. Derived automatically from ancomsimpVD 29151. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomsimp  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )

Proof of Theorem ancomsimp
StepHypRef Expression
1 ancom 439 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21imbi1i 317 1  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360
This theorem is referenced by:  exp3acom23g  1381  ralcomf  2873  ovolgelb  19414  itg2leub  19662  nmoubi  22311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator