MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancr Structured version   Unicode version

Theorem ancr 534
Description: Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancr  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ( ps 
/\  ph ) ) )

Proof of Theorem ancr
StepHypRef Expression
1 pm3.21 437 . 2  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
21a2i 13 1  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ( ps 
/\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem is referenced by:  bimsc1  906  reupick2  3615  intmin4  4108  lukshef-ax2  26200  pm14.122b  27712  bnj1098  29328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator