MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Unicode version

Theorem angpieqvd 20130
Description: The angle ABC is  pi iff B is a nontrivial convex combination of A and C, i.e., iff B is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
angpieqvd.A  |-  ( ph  ->  A  e.  CC )
angpieqvd.B  |-  ( ph  ->  B  e.  CC )
angpieqvd.C  |-  ( ph  ->  C  e.  CC )
angpieqvd.AneB  |-  ( ph  ->  A  =/=  B )
angpieqvd.BneC  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
angpieqvd  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi  <->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C
) ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    w, F    ph, w    w, A    w, B    w, C
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
2 angpieqvd.A . . . . . . 7  |-  ( ph  ->  A  e.  CC )
3 angpieqvd.B . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4 angpieqvd.C . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5 angpieqvd.AneB . . . . . . 7  |-  ( ph  ->  A  =/=  B )
6 angpieqvd.BneC . . . . . . 7  |-  ( ph  ->  B  =/=  C )
71, 2, 3, 4, 5, 6angpieqvdlem2 20128 . . . . . 6  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( ( A  -  B ) F ( C  -  B ) )  =  pi ) )
87biimpar 471 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  -u (
( C  -  B
)  /  ( A  -  B ) )  e.  RR+ )
92adantr 451 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  A  e.  CC )
103adantr 451 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  B  e.  CC )
114adantr 451 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  C  e.  CC )
125adantr 451 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  A  =/=  B )
131, 2, 3, 4, 5, 6angpined 20129 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi 
->  A  =/=  C
) )
1413imp 418 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  A  =/=  C )
159, 10, 11, 12, 14angpieqvdlem 20127 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( -u ( ( C  -  B )  /  ( A  -  B )
)  e.  RR+  <->  ( ( C  -  B )  /  ( C  -  A ) )  e.  ( 0 (,) 1
) ) )
168, 15mpbid 201 . . . 4  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  (
( C  -  B
)  /  ( C  -  A ) )  e.  ( 0 (,) 1 ) )
174, 3subcld 9159 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
1817adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  B )  e.  CC )
194, 2subcld 9159 . . . . . . . 8  |-  ( ph  ->  ( C  -  A
)  e.  CC )
2019adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  A )  e.  CC )
2114necomd 2531 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  C  =/=  A )
2211, 9, 21subne0d 9168 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  A )  =/=  0 )
2318, 20, 22divcan1d 9539 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  (
( ( C  -  B )  /  ( C  -  A )
)  x.  ( C  -  A ) )  =  ( C  -  B ) )
2423eqcomd 2290 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  B )  =  ( ( ( C  -  B )  /  ( C  -  A ) )  x.  ( C  -  A
) ) )
2518, 20, 22divcld 9538 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  (
( C  -  B
)  /  ( C  -  A ) )  e.  CC )
269, 10, 11, 25affineequiv 20125 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( B  =  ( (
( ( C  -  B )  /  ( C  -  A )
)  x.  A )  +  ( ( 1  -  ( ( C  -  B )  / 
( C  -  A
) ) )  x.  C ) )  <->  ( C  -  B )  =  ( ( ( C  -  B )  /  ( C  -  A )
)  x.  ( C  -  A ) ) ) )
2724, 26mpbird 223 . . . 4  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  B  =  ( ( ( ( C  -  B
)  /  ( C  -  A ) )  x.  A )  +  ( ( 1  -  ( ( C  -  B )  /  ( C  -  A )
) )  x.  C
) ) )
28 oveq1 5867 . . . . . . 7  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
w  x.  A )  =  ( ( ( C  -  B )  /  ( C  -  A ) )  x.  A ) )
29 oveq2 5868 . . . . . . . 8  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
1  -  w )  =  ( 1  -  ( ( C  -  B )  /  ( C  -  A )
) ) )
3029oveq1d 5875 . . . . . . 7  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
( 1  -  w
)  x.  C )  =  ( ( 1  -  ( ( C  -  B )  / 
( C  -  A
) ) )  x.  C ) )
3128, 30oveq12d 5878 . . . . . 6  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
( w  x.  A
)  +  ( ( 1  -  w )  x.  C ) )  =  ( ( ( ( C  -  B
)  /  ( C  -  A ) )  x.  A )  +  ( ( 1  -  ( ( C  -  B )  /  ( C  -  A )
) )  x.  C
) ) )
3231eqeq2d 2296 . . . . 5  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  ( B  =  ( (
w  x.  A )  +  ( ( 1  -  w )  x.  C ) )  <->  B  =  ( ( ( ( C  -  B )  /  ( C  -  A ) )  x.  A )  +  ( ( 1  -  (
( C  -  B
)  /  ( C  -  A ) ) )  x.  C ) ) ) )
3332rspcev 2886 . . . 4  |-  ( ( ( ( C  -  B )  /  ( C  -  A )
)  e.  ( 0 (,) 1 )  /\  B  =  ( (
( ( C  -  B )  /  ( C  -  A )
)  x.  A )  +  ( ( 1  -  ( ( C  -  B )  / 
( C  -  A
) ) )  x.  C ) ) )  ->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C ) ) )
3416, 27, 33syl2anc 642 . . 3  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  E. w  e.  ( 0 (,) 1
) B  =  ( ( w  x.  A
)  +  ( ( 1  -  w )  x.  C ) ) )
3534ex 423 . 2  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi 
->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C ) ) ) )
362adantr 451 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  A  e.  CC )
373adantr 451 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  B  e.  CC )
384adantr 451 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  C  e.  CC )
39 simpr 447 . . . . . 6  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  w  e.  ( 0 (,) 1
) )
40 elioore 10688 . . . . . 6  |-  ( w  e.  ( 0 (,) 1 )  ->  w  e.  RR )
41 recn 8829 . . . . . 6  |-  ( w  e.  RR  ->  w  e.  CC )
4239, 40, 413syl 18 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  w  e.  CC )
4336, 37, 38, 42affineequiv 20125 . . . 4  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  ( B  =  ( (
w  x.  A )  +  ( ( 1  -  w )  x.  C ) )  <->  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) ) )
44 simp3 957 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )
45173ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  B )  e.  CC )
46423adant3 975 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  w  e.  CC )
47193ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  A )  e.  CC )
486necomd 2531 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  B )
494, 3, 48subne0d 9168 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  B
)  =/=  0 )
50493ad2ant1 976 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  B )  =/=  0
)
5144, 50eqnetrrd 2468 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( w  x.  ( C  -  A
) )  =/=  0
)
5246, 47, 51mulne0bbd 9424 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  A )  =/=  0
)
5345, 46, 47, 52divmul3d 9572 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( (
( C  -  B
)  /  ( C  -  A ) )  =  w  <->  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) ) )
5444, 53mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( ( C  -  B )  /  ( C  -  A ) )  =  w )
55 simp2 956 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  w  e.  ( 0 (,) 1
) )
5654, 55eqeltrd 2359 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( ( C  -  B )  /  ( C  -  A ) )  e.  ( 0 (,) 1
) )
5723ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  A  e.  CC )
5833ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  B  e.  CC )
5943ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  C  e.  CC )
6053ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  A  =/=  B )
6159, 57, 52subne0ad 9170 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  C  =/=  A )
6261necomd 2531 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  A  =/=  C )
6357, 58, 59, 60, 62angpieqvdlem 20127 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( -u (
( C  -  B
)  /  ( A  -  B ) )  e.  RR+  <->  ( ( C  -  B )  / 
( C  -  A
) )  e.  ( 0 (,) 1 ) ) )
6456, 63mpbird 223 . . . . . 6  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ )
6563ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  B  =/=  C )
661, 57, 58, 59, 60, 65angpieqvdlem2 20128 . . . . . 6  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( -u (
( C  -  B
)  /  ( A  -  B ) )  e.  RR+  <->  ( ( A  -  B ) F ( C  -  B
) )  =  pi ) )
6764, 66mpbid 201 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( ( A  -  B ) F ( C  -  B ) )  =  pi )
68673expia 1153 . . . 4  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  (
( C  -  B
)  =  ( w  x.  ( C  -  A ) )  -> 
( ( A  -  B ) F ( C  -  B ) )  =  pi ) )
6943, 68sylbid 206 . . 3  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  ( B  =  ( (
w  x.  A )  +  ( ( 1  -  w )  x.  C ) )  -> 
( ( A  -  B ) F ( C  -  B ) )  =  pi ) )
7069rexlimdva 2669 . 2  |-  ( ph  ->  ( E. w  e.  ( 0 (,) 1
) B  =  ( ( w  x.  A
)  +  ( ( 1  -  w )  x.  C ) )  ->  ( ( A  -  B ) F ( C  -  B
) )  =  pi ) )
7135, 70impbid 183 1  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi  <->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   E.wrex 2546    \ cdif 3151   {csn 3642   ` cfv 5257  (class class class)co 5860    e. cmpt2 5862   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    - cmin 9039   -ucneg 9040    / cdiv 9425   RR+crp 10356   (,)cioo 10658   Imcim 11585   picpi 12350   logclog 19914
This theorem is referenced by:  chordthm  20136  chordthmALT  28783
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916
  Copyright terms: Public domain W3C validator