MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Unicode version

Theorem angpieqvdlem 20657
Description: Equivalence used in the proof of angpieqvd 20660. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A  |-  ( ph  ->  A  e.  CC )
angpieqvdlem.B  |-  ( ph  ->  B  e.  CC )
angpieqvdlem.C  |-  ( ph  ->  C  e.  CC )
angpieqvdlem.AneB  |-  ( ph  ->  A  =/=  B )
angpieqvdlem.AneC  |-  ( ph  ->  A  =/=  C )
Assertion
Ref Expression
angpieqvdlem  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( ( C  -  B )  /  ( C  -  A )
)  e.  ( 0 (,) 1 ) ) )

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6  |-  ( ph  ->  C  e.  CC )
2 angpieqvdlem.B . . . . . 6  |-  ( ph  ->  B  e.  CC )
31, 2subcld 9400 . . . . 5  |-  ( ph  ->  ( C  -  B
)  e.  CC )
4 angpieqvdlem.A . . . . . 6  |-  ( ph  ->  A  e.  CC )
54, 2subcld 9400 . . . . 5  |-  ( ph  ->  ( A  -  B
)  e.  CC )
6 angpieqvdlem.AneB . . . . . 6  |-  ( ph  ->  A  =/=  B )
74, 2, 6subne0d 9409 . . . . 5  |-  ( ph  ->  ( A  -  B
)  =/=  0 )
83, 5, 7divcld 9779 . . . 4  |-  ( ph  ->  ( ( C  -  B )  /  ( A  -  B )
)  e.  CC )
98negcld 9387 . . 3  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  e.  CC )
10 ax-1cn 9037 . . . . 5  |-  1  e.  CC
1110a1i 11 . . . 4  |-  ( ph  ->  1  e.  CC )
12 angpieqvdlem.AneC . . . . . . 7  |-  ( ph  ->  A  =/=  C )
1312necomd 2681 . . . . . 6  |-  ( ph  ->  C  =/=  A )
141, 4, 2, 13subneintr2d 9446 . . . . 5  |-  ( ph  ->  ( C  -  B
)  =/=  ( A  -  B ) )
153, 5, 7, 14divne1d 9790 . . . 4  |-  ( ph  ->  ( ( C  -  B )  /  ( A  -  B )
)  =/=  1 )
168, 11, 15negned 9397 . . 3  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  =/=  -u 1
)
179, 16xov1plusxeqvd 11030 . 2  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  / 
( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) ) )  e.  ( 0 (,) 1
) ) )
183, 5, 7divnegd 9792 . . . . . 6  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  =  (
-u ( C  -  B )  /  ( A  -  B )
) )
191, 2negsubdi2d 9416 . . . . . . 7  |-  ( ph  -> 
-u ( C  -  B )  =  ( B  -  C ) )
2019oveq1d 6087 . . . . . 6  |-  ( ph  ->  ( -u ( C  -  B )  / 
( A  -  B
) )  =  ( ( B  -  C
)  /  ( A  -  B ) ) )
2118, 20eqtrd 2467 . . . . 5  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  =  ( ( B  -  C
)  /  ( A  -  B ) ) )
225, 7dividd 9777 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  B )  /  ( A  -  B )
)  =  1 )
2322oveq1d 6087 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  B )  / 
( A  -  B
) )  -  (
( C  -  B
)  /  ( A  -  B ) ) )  =  ( 1  -  ( ( C  -  B )  / 
( A  -  B
) ) ) )
245, 3, 5, 7divsubdird 9818 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  B )  -  ( C  -  B
) )  /  ( A  -  B )
)  =  ( ( ( A  -  B
)  /  ( A  -  B ) )  -  ( ( C  -  B )  / 
( A  -  B
) ) ) )
2511, 8negsubd 9406 . . . . . . 7  |-  ( ph  ->  ( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) )  =  ( 1  -  ( ( C  -  B )  /  ( A  -  B ) ) ) )
2623, 24, 253eqtr4rd 2478 . . . . . 6  |-  ( ph  ->  ( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) )  =  ( ( ( A  -  B )  -  ( C  -  B )
)  /  ( A  -  B ) ) )
274, 1, 2nnncan2d 9435 . . . . . . 7  |-  ( ph  ->  ( ( A  -  B )  -  ( C  -  B )
)  =  ( A  -  C ) )
2827oveq1d 6087 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  B )  -  ( C  -  B
) )  /  ( A  -  B )
)  =  ( ( A  -  C )  /  ( A  -  B ) ) )
2926, 28eqtrd 2467 . . . . 5  |-  ( ph  ->  ( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) )  =  ( ( A  -  C
)  /  ( A  -  B ) ) )
3021, 29oveq12d 6090 . . . 4  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  / 
( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) ) )  =  ( ( ( B  -  C )  / 
( A  -  B
) )  /  (
( A  -  C
)  /  ( A  -  B ) ) ) )
312, 1subcld 9400 . . . . 5  |-  ( ph  ->  ( B  -  C
)  e.  CC )
324, 1subcld 9400 . . . . 5  |-  ( ph  ->  ( A  -  C
)  e.  CC )
334, 1, 12subne0d 9409 . . . . 5  |-  ( ph  ->  ( A  -  C
)  =/=  0 )
3431, 32, 5, 33, 7divcan7d 9807 . . . 4  |-  ( ph  ->  ( ( ( B  -  C )  / 
( A  -  B
) )  /  (
( A  -  C
)  /  ( A  -  B ) ) )  =  ( ( B  -  C )  /  ( A  -  C ) ) )
352, 1, 4, 1, 12div2subd 9829 . . . 4  |-  ( ph  ->  ( ( B  -  C )  /  ( A  -  C )
)  =  ( ( C  -  B )  /  ( C  -  A ) ) )
3630, 34, 353eqtrrd 2472 . . 3  |-  ( ph  ->  ( ( C  -  B )  /  ( C  -  A )
)  =  ( -u ( ( C  -  B )  /  ( A  -  B )
)  /  ( 1  +  -u ( ( C  -  B )  / 
( A  -  B
) ) ) ) )
3736eleq1d 2501 . 2  |-  ( ph  ->  ( ( ( C  -  B )  / 
( C  -  A
) )  e.  ( 0 (,) 1 )  <-> 
( -u ( ( C  -  B )  / 
( A  -  B
) )  /  (
1  +  -u (
( C  -  B
)  /  ( A  -  B ) ) ) )  e.  ( 0 (,) 1 ) ) )
3817, 37bitr4d 248 1  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( ( C  -  B )  /  ( C  -  A )
)  e.  ( 0 (,) 1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1725    =/= wne 2598  (class class class)co 6072   CCcc 8977   0cc0 8979   1c1 8980    + caddc 8982    - cmin 9280   -ucneg 9281    / cdiv 9666   RR+crp 10601   (,)cioo 10905
This theorem is referenced by:  angpieqvd  20660
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-rp 10602  df-ioo 10909
  Copyright terms: Public domain W3C validator