MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angrtmuld Unicode version

Theorem angrtmuld 20054
Description: Perpendicularity of two vectors does not change under rescaling the second. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
angrtmuld.1  |-  ( ph  ->  X  e.  CC )
angrtmuld.2  |-  ( ph  ->  Y  e.  CC )
angrtmuld.3  |-  ( ph  ->  Z  e.  CC )
angrtmuld.4  |-  ( ph  ->  X  =/=  0 )
angrtmuld.5  |-  ( ph  ->  Y  =/=  0 )
angrtmuld.6  |-  ( ph  ->  Z  =/=  0 )
angrtmuld.7  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
Assertion
Ref Expression
angrtmuld  |-  ( ph  ->  ( ( X F Y )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( X F Z )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
Distinct variable groups:    x, y, X    x, Y, y    x, Z, y
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem angrtmuld
StepHypRef Expression
1 angrtmuld.3 . . . . 5  |-  ( ph  ->  Z  e.  CC )
2 angrtmuld.2 . . . . 5  |-  ( ph  ->  Y  e.  CC )
3 angrtmuld.6 . . . . 5  |-  ( ph  ->  Z  =/=  0 )
4 angrtmuld.5 . . . . 5  |-  ( ph  ->  Y  =/=  0 )
51, 2, 3, 4divne0d 9506 . . . 4  |-  ( ph  ->  ( Z  /  Y
)  =/=  0 )
65neneqd 2435 . . 3  |-  ( ph  ->  -.  ( Z  /  Y )  =  0 )
7 biorf 396 . . 3  |-  ( -.  ( Z  /  Y
)  =  0  -> 
( ( Re `  ( Y  /  X
) )  =  0  <-> 
( ( Z  /  Y )  =  0  \/  ( Re `  ( Y  /  X
) )  =  0 ) ) )
86, 7syl 17 . 2  |-  ( ph  ->  ( ( Re `  ( Y  /  X
) )  =  0  <-> 
( ( Z  /  Y )  =  0  \/  ( Re `  ( Y  /  X
) )  =  0 ) ) )
9 ang.1 . . 3  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
10 angrtmuld.1 . . 3  |-  ( ph  ->  X  e.  CC )
11 angrtmuld.4 . . 3  |-  ( ph  ->  X  =/=  0 )
129, 10, 11, 2, 4angrteqvd 20052 . 2  |-  ( ph  ->  ( ( X F Y )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( Re `  ( Y  /  X
) )  =  0 ) )
139, 10, 11, 1, 3angrteqvd 20052 . . 3  |-  ( ph  ->  ( ( X F Z )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( Re `  ( Z  /  X
) )  =  0 ) )
141, 2, 10, 4, 11dmdcan2d 9520 . . . . . 6  |-  ( ph  ->  ( ( Z  /  Y )  x.  ( Y  /  X ) )  =  ( Z  /  X ) )
1514fveq2d 5448 . . . . 5  |-  ( ph  ->  ( Re `  (
( Z  /  Y
)  x.  ( Y  /  X ) ) )  =  ( Re
`  ( Z  /  X ) ) )
16 angrtmuld.7 . . . . . 6  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
172, 10, 11divcld 9490 . . . . . 6  |-  ( ph  ->  ( Y  /  X
)  e.  CC )
1816, 17remul2d 11663 . . . . 5  |-  ( ph  ->  ( Re `  (
( Z  /  Y
)  x.  ( Y  /  X ) ) )  =  ( ( Z  /  Y )  x.  ( Re `  ( Y  /  X
) ) ) )
1915, 18eqtr3d 2290 . . . 4  |-  ( ph  ->  ( Re `  ( Z  /  X ) )  =  ( ( Z  /  Y )  x.  ( Re `  ( Y  /  X ) ) ) )
2019eqeq1d 2264 . . 3  |-  ( ph  ->  ( ( Re `  ( Z  /  X
) )  =  0  <-> 
( ( Z  /  Y )  x.  (
Re `  ( Y  /  X ) ) )  =  0 ) )
211, 2, 4divcld 9490 . . . 4  |-  ( ph  ->  ( Z  /  Y
)  e.  CC )
2217recld 11630 . . . . 5  |-  ( ph  ->  ( Re `  ( Y  /  X ) )  e.  RR )
2322recnd 8815 . . . 4  |-  ( ph  ->  ( Re `  ( Y  /  X ) )  e.  CC )
2421, 23mul0ord 9372 . . 3  |-  ( ph  ->  ( ( ( Z  /  Y )  x.  ( Re `  ( Y  /  X ) ) )  =  0  <->  (
( Z  /  Y
)  =  0  \/  ( Re `  ( Y  /  X ) )  =  0 ) ) )
2513, 20, 243bitrd 272 . 2  |-  ( ph  ->  ( ( X F Z )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( ( Z  /  Y )  =  0  \/  ( Re
`  ( Y  /  X ) )  =  0 ) ) )
268, 12, 253bitr4d 278 1  |-  ( ph  ->  ( ( X F Y )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( X F Z )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    = wceq 1619    e. wcel 1621    =/= wne 2419    \ cdif 3110   {csn 3600   {cpr 3601   ` cfv 4659  (class class class)co 5778    e. cmpt2 5780   CCcc 8689   RRcr 8690   0cc0 8691    x. cmul 8696   -ucneg 8992    / cdiv 9377   2c2 9749   Recre 11533   Imcim 11534   picpi 12296   logclog 19860
This theorem is referenced by:  chordthmlem2  20078
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-sum 12110  df-ef 12297  df-sin 12299  df-cos 12300  df-pi 12302  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862
  Copyright terms: Public domain W3C validator