Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  anim12da Unicode version

Theorem anim12da 25731
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
anim12da.1  |-  ( (
ph  /\  ps )  ->  th )
anim12da.2  |-  ( (
ph  /\  ch )  ->  ta )
Assertion
Ref Expression
anim12da  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  -> 
( th  /\  ta ) )

Proof of Theorem anim12da
StepHypRef Expression
1 anim12da.1 . 2  |-  ( (
ph  /\  ps )  ->  th )
2 anim12da.2 . 2  |-  ( (
ph  /\  ch )  ->  ta )
31, 2anim12dan 812 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  -> 
( th  /\  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  ghomco  25972  rngohomco  26004  rngoisocnv  26011  rngoisoco  26012  idlsubcl  26047
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator